Determination of parameters of viscoelastic anisotropy from ray velocity and ray attenuation: Theory and numerical modeling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985530%3A_____%2F15%3A00448564" target="_blank" >RIV/67985530:_____/15:00448564 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1190/GEO2014-0355.1" target="_blank" >http://dx.doi.org/10.1190/GEO2014-0355.1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1190/GEO2014-0355.1" target="_blank" >10.1190/GEO2014-0355.1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Determination of parameters of viscoelastic anisotropy from ray velocity and ray attenuation: Theory and numerical modeling
Popis výsledku v původním jazyce
We have developed and numerically tested a method for determining parameters of homogeneous viscoelastic anisotropy from measurements of wavefields generated by point sources. The method is based on complex algebra and consists of several steps. First, acomplex energy velocity surface is constructed from the directionally dependent velocity and attenuation measured along a set of ray directions. Second, a complex slowness surface is computed using the relation of polar reciprocity between the energy velocity and slowness vectors. The energy velocity vectors are homogeneous, but the corresponding slowness vectors are inhomogeneous. Finally, the complex phase velocity surface is calculated and inverted using the Christoffel equation. The inversion is nonlinear and can be performed in iterations. Numerical tests for the P-wave in transversely isotropic media showed that the method performed well for a wide range of models covering strong as well as weak velocity anisotropy and various le
Název v anglickém jazyce
Determination of parameters of viscoelastic anisotropy from ray velocity and ray attenuation: Theory and numerical modeling
Popis výsledku anglicky
We have developed and numerically tested a method for determining parameters of homogeneous viscoelastic anisotropy from measurements of wavefields generated by point sources. The method is based on complex algebra and consists of several steps. First, acomplex energy velocity surface is constructed from the directionally dependent velocity and attenuation measured along a set of ray directions. Second, a complex slowness surface is computed using the relation of polar reciprocity between the energy velocity and slowness vectors. The energy velocity vectors are homogeneous, but the corresponding slowness vectors are inhomogeneous. Finally, the complex phase velocity surface is calculated and inverted using the Christoffel equation. The inversion is nonlinear and can be performed in iterations. Numerical tests for the P-wave in transversely isotropic media showed that the method performed well for a wide range of models covering strong as well as weak velocity anisotropy and various le
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
DC - Seismologie, vulkanologie a struktura Země
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP210%2F12%2F1491" target="_blank" >GAP210/12/1491: Fyzikální procesy v zemětřesném ohnisku: od mikrozemětřesení k makrozemětřesením</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Geophysics
ISSN
0016-8033
e-ISSN
—
Svazek periodika
80
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
"C59"-"C71"
Kód UT WoS článku
000356364300006
EID výsledku v databázi Scopus
—