Orbital signals in carbon isotopes: phase distortion as a signature of the carbon cycle
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985530%3A_____%2F17%3A00480226" target="_blank" >RIV/67985530:_____/17:00480226 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1002/2017PA003143" target="_blank" >http://dx.doi.org/10.1002/2017PA003143</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/2017PA003143" target="_blank" >10.1002/2017PA003143</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Orbital signals in carbon isotopes: phase distortion as a signature of the carbon cycle
Popis výsledku v původním jazyce
Isotopic mass balance models are employed here to study the response of carbon isotope composition (delta C-13) of the ocean-atmosphere system to amplitude-modulated perturbations on Milankovitch time scales. We identify a systematic phase distortion, which is inherent to a leakage of power from the carrier precessional signal to the modulating eccentricity terms in the global carbon cycle. The origin is partly analogous to the simple cumulative effect in sinusoidal signals, reflecting the residence time of carbon in the ocean-atmosphere reservoir. The details of origin and practical implications are, however, different. In amplitude-modulated signals, the deformation is manifested as a lag of the 405 kyr eccentricity cycle behind amplitude modulation (AM) of the short (similar to 100 kyr) eccentricity cycle. Importantly, the phase of AM remains stable during the carbon cycle transfer, thus providing a reference framework against which to evaluate distortion of the 405 kyr term. The phase relationships can help to (1) identify depositional and diagenetic signatures in delta C-13 and (2) interpret the pathways of astronomical signal through the climate system. The approach is illustrated by case studies of Albian and Oligocene records using a new computational tool EPNOSE (Evaluation of Phase in uNcertain and nOisy SEries). Analogous phase distortions occur in other components of the carbon cycle including atmospheric CO2 levels. Hence, to fully understand the causal relationships on astronomical time scales, paleoclimate models may need to incorporate realistic, amplitude-modulated insolation instead of monochromatic sinusoidal approximations. Finally, detection of the lagged delta C-13 response can help to reduce uncertainties in astrochronological age models that are tuned to the 405 kyr cycle.
Název v anglickém jazyce
Orbital signals in carbon isotopes: phase distortion as a signature of the carbon cycle
Popis výsledku anglicky
Isotopic mass balance models are employed here to study the response of carbon isotope composition (delta C-13) of the ocean-atmosphere system to amplitude-modulated perturbations on Milankovitch time scales. We identify a systematic phase distortion, which is inherent to a leakage of power from the carrier precessional signal to the modulating eccentricity terms in the global carbon cycle. The origin is partly analogous to the simple cumulative effect in sinusoidal signals, reflecting the residence time of carbon in the ocean-atmosphere reservoir. The details of origin and practical implications are, however, different. In amplitude-modulated signals, the deformation is manifested as a lag of the 405 kyr eccentricity cycle behind amplitude modulation (AM) of the short (similar to 100 kyr) eccentricity cycle. Importantly, the phase of AM remains stable during the carbon cycle transfer, thus providing a reference framework against which to evaluate distortion of the 405 kyr term. The phase relationships can help to (1) identify depositional and diagenetic signatures in delta C-13 and (2) interpret the pathways of astronomical signal through the climate system. The approach is illustrated by case studies of Albian and Oligocene records using a new computational tool EPNOSE (Evaluation of Phase in uNcertain and nOisy SEries). Analogous phase distortions occur in other components of the carbon cycle including atmospheric CO2 levels. Hence, to fully understand the causal relationships on astronomical time scales, paleoclimate models may need to incorporate realistic, amplitude-modulated insolation instead of monochromatic sinusoidal approximations. Finally, detection of the lagged delta C-13 response can help to reduce uncertainties in astrochronological age models that are tuned to the 405 kyr cycle.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10505 - Geology
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-10982S" target="_blank" >GA17-10982S: Globální cyklus uhlíku a změny hladiny oceánu ve skleníkovém klimatu: trans-atlantická korelace sedimentárních archivů turonu (křída)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Paleoceanography
ISSN
0883-8305
e-ISSN
—
Svazek periodika
32
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
1236-1255
Kód UT WoS článku
000418169800010
EID výsledku v databázi Scopus
2-s2.0-85034262786