Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Single Layer Recurrent Neural Network for detection of local swarm-like earthquakes-the application

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985530%3A_____%2F19%3A00508961" target="_blank" >RIV/67985530:_____/19:00508961 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://academic.oup.com/gji/article-abstract/219/1/672/5532359?redirectedFrom=fulltext" target="_blank" >https://academic.oup.com/gji/article-abstract/219/1/672/5532359?redirectedFrom=fulltext</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/gji/ggz321" target="_blank" >10.1093/gji/ggz321</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Single Layer Recurrent Neural Network for detection of local swarm-like earthquakes-the application

  • Popis výsledku v původním jazyce

    We present results of applying a local event detector based on artificial neural networks (ANNs) to two seismically active regions. The concept of ANNs enables us to recognize earthquake-like signals in seismograms because well-trained neural networks are characterized by the ability to generalize to unseen examples. This means that once the ANN is trained, in our case by few tens to hundreds of examples of local event seismograms, the algorithm can then recognize similar features in unknown records. The detailed description of the single-station detection, design and training of the ANN has been described in our previous paper. Here we show the practical application of our ANN to the same seismoactive region we used for its training, West Bohemia/Vogtland (border area Czechia-Saxony, local seismic network WEBNET), and to different seismogenic area, Reykjanes Peninsula (South-West Iceland, local seismic network REYKJANET). The training process requires carefully prepared data set which is preferably achieved by manual processing. Such data were available for the West Bohemia/Vogtland earthquake-swarm region, so we used them to train the ANN and test its performance. Due to the absence of completely manually processed activity for the Reykjanes Peninsula, we use the trained ANN for swarm-like activity in such a different tectonic setting. The application of a coincidence of the single-station detections helps to reduce significantly the number of undetected events as well as the number of false alarms. Setting up the minimum number of stations which are required to confirm an event detection enables us to choose the balance between minimum magnitude threshold and a number of false alarms.

  • Název v anglickém jazyce

    Single Layer Recurrent Neural Network for detection of local swarm-like earthquakes-the application

  • Popis výsledku anglicky

    We present results of applying a local event detector based on artificial neural networks (ANNs) to two seismically active regions. The concept of ANNs enables us to recognize earthquake-like signals in seismograms because well-trained neural networks are characterized by the ability to generalize to unseen examples. This means that once the ANN is trained, in our case by few tens to hundreds of examples of local event seismograms, the algorithm can then recognize similar features in unknown records. The detailed description of the single-station detection, design and training of the ANN has been described in our previous paper. Here we show the practical application of our ANN to the same seismoactive region we used for its training, West Bohemia/Vogtland (border area Czechia-Saxony, local seismic network WEBNET), and to different seismogenic area, Reykjanes Peninsula (South-West Iceland, local seismic network REYKJANET). The training process requires carefully prepared data set which is preferably achieved by manual processing. Such data were available for the West Bohemia/Vogtland earthquake-swarm region, so we used them to train the ANN and test its performance. Due to the absence of completely manually processed activity for the Reykjanes Peninsula, we use the trained ANN for swarm-like activity in such a different tectonic setting. The application of a coincidence of the single-station detections helps to reduce significantly the number of undetected events as well as the number of false alarms. Setting up the minimum number of stations which are required to confirm an event detection enables us to choose the balance between minimum magnitude threshold and a number of false alarms.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10507 - Volcanology

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Geophysical Journal International

  • ISSN

    0956-540X

  • e-ISSN

  • Svazek periodika

    219

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    18

  • Strana od-do

    672-689

  • Kód UT WoS článku

    000484124800041

  • EID výsledku v databázi Scopus