Refined models of the conductivity distribution at the transition from the Bohemian Massif to the West Carpathians using stochastic MCMC thin sheet inversion of the geomagnetic induction data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985530%3A_____%2F19%3A00509002" target="_blank" >RIV/67985530:_____/19:00509002 - isvavai.cz</a>
Výsledek na webu
<a href="https://academic.oup.com/gji/article-abstract/218/3/1983/5513449?redirectedFrom=fulltext" target="_blank" >https://academic.oup.com/gji/article-abstract/218/3/1983/5513449?redirectedFrom=fulltext</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/gji/ggz265" target="_blank" >10.1093/gji/ggz265</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Refined models of the conductivity distribution at the transition from the Bohemian Massif to the West Carpathians using stochastic MCMC thin sheet inversion of the geomagnetic induction data
Popis výsledku v původním jazyce
Although volume 3-D modelling solutions has become widespread in recent time, thin sheet approximation of Earth's conductivity distribution can still serve as a useful tool when quasi-3-D conductivity structures in the heterogeneous subsurface are investigated and the available database of observations is limited to long-period electromagnetic induction data from large-scale deep sounding arrays. We present results of stochastic Monte Carlo Markov Chains (MCMC) inversion of long-period induction arrows based on the Bayesian statistics strategy.nWe concentrated on the different methodological aspects of MCMC for Gibbs sampling and for adaptive Metropolis algorithm together with convergence of these methods. The results are presented on a case study from the transition zone between the Bohemian Massif and the West Carpathians where a phantom effect caused by superposition of the prominent SW-NE trending Carpathian Conductivity Anomaly and NW-SE trending anomalous structure related to the fault system at the eastern boundary of the Bohemian Massif appears.
Název v anglickém jazyce
Refined models of the conductivity distribution at the transition from the Bohemian Massif to the West Carpathians using stochastic MCMC thin sheet inversion of the geomagnetic induction data
Popis výsledku anglicky
Although volume 3-D modelling solutions has become widespread in recent time, thin sheet approximation of Earth's conductivity distribution can still serve as a useful tool when quasi-3-D conductivity structures in the heterogeneous subsurface are investigated and the available database of observations is limited to long-period electromagnetic induction data from large-scale deep sounding arrays. We present results of stochastic Monte Carlo Markov Chains (MCMC) inversion of long-period induction arrows based on the Bayesian statistics strategy.nWe concentrated on the different methodological aspects of MCMC for Gibbs sampling and for adaptive Metropolis algorithm together with convergence of these methods. The results are presented on a case study from the transition zone between the Bohemian Massif and the West Carpathians where a phantom effect caused by superposition of the prominent SW-NE trending Carpathian Conductivity Anomaly and NW-SE trending anomalous structure related to the fault system at the eastern boundary of the Bohemian Massif appears.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Geophysical Journal International
ISSN
0956-540X
e-ISSN
—
Svazek periodika
218
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
18
Strana od-do
1983-2000
Kód UT WoS článku
000482302200031
EID výsledku v databázi Scopus
2-s2.0-85072279032