Filling the gap in a double seismic zone: Intraslab seismicity in Northern Chile
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985530%3A_____%2F19%3A00512120" target="_blank" >RIV/67985530:_____/19:00512120 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0024493719303068?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0024493719303068?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.lithos.2019.105155" target="_blank" >10.1016/j.lithos.2019.105155</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Filling the gap in a double seismic zone: Intraslab seismicity in Northern Chile
Popis výsledku v původním jazyce
Double seismic zones (DSZs) of intermediate-depth intraslab seismicity are observed in many subduction zones around the globe, and have been related to dehydration reactions in the downgoing crust and mantle lithosphere. These reactions occur at, to first order, constant temperatures, which explains the observed linear arrangements of seismicity that appear to follow isotherms of thermal models. Intermediate-depth seismicity in Northern Chile, however, exhibits a pattern of intraslab seismicity that substantially deviates from a classical DSZ. Whereas two parallel seismicity planes are present in the updip part of the slab, these abruptly change into a 25-30 km thick, homogeneously seismogenic volume at a depth of similar to 80-100 km. Seismicity rate and moment release significantly increase in this depth interval. In order to understand which processes evoke this configuration and what distinguishes the Northern Chile subduction zone from more conventional subduction zone settings (e.g. Japan), we performed a detailed seismological investigation of slab seismicity in Northern Chile using data from the IPOC permanent network. We determined >600 moment tensors of intraslab earthquakes, processed and evaluated location uncertainties for 8 years of high-resolution earthquake hypocenter data, and performed statistical analysis of the different seismicity populations. We observe that earthquakes both in the highly active cluster and the DSZ above exhibit consistently downdip extensive source mechanisms that align with the dip angle and direction of the slab. This implies strong slab pull, which is also evident from slab steepening outlined by hypocenters towards the downdip termination of the highly active cluster. Moreover, events in the cluster show a very weak aftershock productivity and a high background event rate, which leads to a temporal distribution of seismicity that is close to a purely random process.
Název v anglickém jazyce
Filling the gap in a double seismic zone: Intraslab seismicity in Northern Chile
Popis výsledku anglicky
Double seismic zones (DSZs) of intermediate-depth intraslab seismicity are observed in many subduction zones around the globe, and have been related to dehydration reactions in the downgoing crust and mantle lithosphere. These reactions occur at, to first order, constant temperatures, which explains the observed linear arrangements of seismicity that appear to follow isotherms of thermal models. Intermediate-depth seismicity in Northern Chile, however, exhibits a pattern of intraslab seismicity that substantially deviates from a classical DSZ. Whereas two parallel seismicity planes are present in the updip part of the slab, these abruptly change into a 25-30 km thick, homogeneously seismogenic volume at a depth of similar to 80-100 km. Seismicity rate and moment release significantly increase in this depth interval. In order to understand which processes evoke this configuration and what distinguishes the Northern Chile subduction zone from more conventional subduction zone settings (e.g. Japan), we performed a detailed seismological investigation of slab seismicity in Northern Chile using data from the IPOC permanent network. We determined >600 moment tensors of intraslab earthquakes, processed and evaluated location uncertainties for 8 years of high-resolution earthquake hypocenter data, and performed statistical analysis of the different seismicity populations. We observe that earthquakes both in the highly active cluster and the DSZ above exhibit consistently downdip extensive source mechanisms that align with the dip angle and direction of the slab. This implies strong slab pull, which is also evident from slab steepening outlined by hypocenters towards the downdip termination of the highly active cluster. Moreover, events in the cluster show a very weak aftershock productivity and a high background event rate, which leads to a temporal distribution of seismicity that is close to a purely random process.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10507 - Volcanology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Lithos
ISSN
0024-4937
e-ISSN
—
Svazek periodika
346-347
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
17
Strana od-do
UNSP 105155
Kód UT WoS článku
000488335600029
EID výsledku v databázi Scopus
2-s2.0-85073707249