Modeling the seismic response of unstable rock mass with deep compliant fractures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985530%3A_____%2F19%3A00532788" target="_blank" >RIV/67985530:_____/19:00532788 - isvavai.cz</a>
Výsledek na webu
<a href="https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JB018607" target="_blank" >https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JB018607</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1029/2019JB018607" target="_blank" >10.1029/2019JB018607</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modeling the seismic response of unstable rock mass with deep compliant fractures
Popis výsledku v původním jazyce
An experimental quantification of the strength and volume of real, heterogeneous, fractured rock masses is crucial when assessing rock slope stability. In order to quantitatively characterize the internal structure of fractured rock slopes, we present three-dimensional numerical simulations of seismic wave propagation and compare with observations. We introduce a simple, effective model for fractured rock mass, which can easily be applied to simulate weak-motion seismic wave propagation. The macroscopic compliant fractures cutting the rock mass are modeled as finite-width zones of reduced elastic parameters characterized by shear and normal stiffness. The widths of such zones are not fixed and can be adjusted to fit the grid step in the numerical method. The proposed rock mass model is applied and tested for the Walkerschmatt site in southwest Switzerland. Synthetic ambient vibrations are generated using a finite-difference method for the fractured rock mass, shaped by the real terrain geometry, and compared with the measurements. The observed seismic response is satisfactorily reproduced in a broad frequency range (0.5-10 Hz). The synthetized response is primarily controlled by the stiffness, depth, number of fractures, and inertial mass of the fractured rock. The simulated amplification and ground-motion directionality correspond with the observed levels, unless (1) the simplified cracks reach depths of 200-300 m and (2) the fracture network is larger with respect to the mapped network. This illustrates the potential of ambient vibration methods in combination with numerical simulations to infer depth, volume, and mechanical characteristics of slope instability.
Název v anglickém jazyce
Modeling the seismic response of unstable rock mass with deep compliant fractures
Popis výsledku anglicky
An experimental quantification of the strength and volume of real, heterogeneous, fractured rock masses is crucial when assessing rock slope stability. In order to quantitatively characterize the internal structure of fractured rock slopes, we present three-dimensional numerical simulations of seismic wave propagation and compare with observations. We introduce a simple, effective model for fractured rock mass, which can easily be applied to simulate weak-motion seismic wave propagation. The macroscopic compliant fractures cutting the rock mass are modeled as finite-width zones of reduced elastic parameters characterized by shear and normal stiffness. The widths of such zones are not fixed and can be adjusted to fit the grid step in the numerical method. The proposed rock mass model is applied and tested for the Walkerschmatt site in southwest Switzerland. Synthetic ambient vibrations are generated using a finite-difference method for the fractured rock mass, shaped by the real terrain geometry, and compared with the measurements. The observed seismic response is satisfactorily reproduced in a broad frequency range (0.5-10 Hz). The synthetized response is primarily controlled by the stiffness, depth, number of fractures, and inertial mass of the fractured rock. The simulated amplification and ground-motion directionality correspond with the observed levels, unless (1) the simplified cracks reach depths of 200-300 m and (2) the fracture network is larger with respect to the mapped network. This illustrates the potential of ambient vibration methods in combination with numerical simulations to infer depth, volume, and mechanical characteristics of slope instability.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10507 - Volcanology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Geophysical Research: Solid Earth
ISSN
2169-9313
e-ISSN
—
Svazek periodika
124
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
13039-13059
Kód UT WoS článku
000512314000039
EID výsledku v databázi Scopus
2-s2.0-85076777575