Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Modeling the seismic response of unstable rock mass with deep compliant fractures

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985530%3A_____%2F19%3A00532788" target="_blank" >RIV/67985530:_____/19:00532788 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JB018607" target="_blank" >https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JB018607</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1029/2019JB018607" target="_blank" >10.1029/2019JB018607</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Modeling the seismic response of unstable rock mass with deep compliant fractures

  • Popis výsledku v původním jazyce

    An experimental quantification of the strength and volume of real, heterogeneous, fractured rock masses is crucial when assessing rock slope stability. In order to quantitatively characterize the internal structure of fractured rock slopes, we present three-dimensional numerical simulations of seismic wave propagation and compare with observations. We introduce a simple, effective model for fractured rock mass, which can easily be applied to simulate weak-motion seismic wave propagation. The macroscopic compliant fractures cutting the rock mass are modeled as finite-width zones of reduced elastic parameters characterized by shear and normal stiffness. The widths of such zones are not fixed and can be adjusted to fit the grid step in the numerical method. The proposed rock mass model is applied and tested for the Walkerschmatt site in southwest Switzerland. Synthetic ambient vibrations are generated using a finite-difference method for the fractured rock mass, shaped by the real terrain geometry, and compared with the measurements. The observed seismic response is satisfactorily reproduced in a broad frequency range (0.5-10 Hz). The synthetized response is primarily controlled by the stiffness, depth, number of fractures, and inertial mass of the fractured rock. The simulated amplification and ground-motion directionality correspond with the observed levels, unless (1) the simplified cracks reach depths of 200-300 m and (2) the fracture network is larger with respect to the mapped network. This illustrates the potential of ambient vibration methods in combination with numerical simulations to infer depth, volume, and mechanical characteristics of slope instability.

  • Název v anglickém jazyce

    Modeling the seismic response of unstable rock mass with deep compliant fractures

  • Popis výsledku anglicky

    An experimental quantification of the strength and volume of real, heterogeneous, fractured rock masses is crucial when assessing rock slope stability. In order to quantitatively characterize the internal structure of fractured rock slopes, we present three-dimensional numerical simulations of seismic wave propagation and compare with observations. We introduce a simple, effective model for fractured rock mass, which can easily be applied to simulate weak-motion seismic wave propagation. The macroscopic compliant fractures cutting the rock mass are modeled as finite-width zones of reduced elastic parameters characterized by shear and normal stiffness. The widths of such zones are not fixed and can be adjusted to fit the grid step in the numerical method. The proposed rock mass model is applied and tested for the Walkerschmatt site in southwest Switzerland. Synthetic ambient vibrations are generated using a finite-difference method for the fractured rock mass, shaped by the real terrain geometry, and compared with the measurements. The observed seismic response is satisfactorily reproduced in a broad frequency range (0.5-10 Hz). The synthetized response is primarily controlled by the stiffness, depth, number of fractures, and inertial mass of the fractured rock. The simulated amplification and ground-motion directionality correspond with the observed levels, unless (1) the simplified cracks reach depths of 200-300 m and (2) the fracture network is larger with respect to the mapped network. This illustrates the potential of ambient vibration methods in combination with numerical simulations to infer depth, volume, and mechanical characteristics of slope instability.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10507 - Volcanology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Geophysical Research: Solid Earth

  • ISSN

    2169-9313

  • e-ISSN

  • Svazek periodika

    124

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    21

  • Strana od-do

    13039-13059

  • Kód UT WoS článku

    000512314000039

  • EID výsledku v databázi Scopus

    2-s2.0-85076777575