The formation and impact of landslide dams – State of the art
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985530%3A_____%2F20%3A00525226" target="_blank" >RIV/67985530:_____/20:00525226 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0012825219304763" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0012825219304763</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.earscirev.2020.103116" target="_blank" >10.1016/j.earscirev.2020.103116</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The formation and impact of landslide dams – State of the art
Popis výsledku v původním jazyce
The blocking of river courses by mass movements is very common in mountainous areas with deep and narrow valleys. Landslide dams may pose serious threats to people and their livelihoods downstream in the case of abrupt dam failure. Since the publication of benchmark reviews of Costa and Schuster (1988) and Korup (2002), there is a growing number of studies focusing on the formation, stability, and short-term impacts of landslide dams. This review combines the insights of all these studies, builds on current concepts of landslide dams, and suggests ways to unify terminologies and classifications. We furthermore present a new worldwide database compiled from literature data. It contains 410 landslide dams >1 million m(3) in volume that were formed since 1900 since these have the most complete data entries. These data show that dam longevity is, among other factors, correlated with the type of landslide forming the dam. Those formed by rock/debris avalanches and rockslides have longest lifespans. However, the influence of landslide type or material on dam longevity decreases with time after dam formation. To ensure consistency in the next database generation, we suggest guidelines for data collection to provide a solid basis for evaluating dam stability and governing factors. A preliminary classification matrix for landslide dam stability that combines topographic setting and the internal structure of the dam body is another outcome of our review. Furthermore, an evaluation of the various geomorphic stability indices proposed in the literature regarding their suitability and limitations in assessing dam formation and stability shows that they predict the probability of dam formation reasonably well, but that their application to longevity estimates requires further assessment. The geomorphic impacts of landslide dams in the short-, medium- and long-term are summarized and illustrated with key examples.
Název v anglickém jazyce
The formation and impact of landslide dams – State of the art
Popis výsledku anglicky
The blocking of river courses by mass movements is very common in mountainous areas with deep and narrow valleys. Landslide dams may pose serious threats to people and their livelihoods downstream in the case of abrupt dam failure. Since the publication of benchmark reviews of Costa and Schuster (1988) and Korup (2002), there is a growing number of studies focusing on the formation, stability, and short-term impacts of landslide dams. This review combines the insights of all these studies, builds on current concepts of landslide dams, and suggests ways to unify terminologies and classifications. We furthermore present a new worldwide database compiled from literature data. It contains 410 landslide dams >1 million m(3) in volume that were formed since 1900 since these have the most complete data entries. These data show that dam longevity is, among other factors, correlated with the type of landslide forming the dam. Those formed by rock/debris avalanches and rockslides have longest lifespans. However, the influence of landslide type or material on dam longevity decreases with time after dam formation. To ensure consistency in the next database generation, we suggest guidelines for data collection to provide a solid basis for evaluating dam stability and governing factors. A preliminary classification matrix for landslide dam stability that combines topographic setting and the internal structure of the dam body is another outcome of our review. Furthermore, an evaluation of the various geomorphic stability indices proposed in the literature regarding their suitability and limitations in assessing dam formation and stability shows that they predict the probability of dam formation reasonably well, but that their application to longevity estimates requires further assessment. The geomorphic impacts of landslide dams in the short-, medium- and long-term are summarized and illustrated with key examples.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10505 - Geology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Earth-Science Reviews
ISSN
0012-8252
e-ISSN
—
Svazek periodika
203
Číslo periodika v rámci svazku
April
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
28
Strana od-do
103116
Kód UT WoS článku
000529058200024
EID výsledku v databázi Scopus
2-s2.0-85082197671