Weak-anisotropy approximation of P-wave geometric spreading in horizontally layered anisotropic media of arbitrary symmetry: Tilted transversely isotropic specification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985530%3A_____%2F21%3A00544688" target="_blank" >RIV/67985530:_____/21:00544688 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/21:10438477
Výsledek na webu
<a href="https://library.seg.org/doi/full/10.1190/geo2020-0720.1" target="_blank" >https://library.seg.org/doi/full/10.1190/geo2020-0720.1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1190/GEO2020-0720.1" target="_blank" >10.1190/GEO2020-0720.1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Weak-anisotropy approximation of P-wave geometric spreading in horizontally layered anisotropic media of arbitrary symmetry: Tilted transversely isotropic specification
Popis výsledku v původním jazyce
Understanding the role of geometric spreading and estimating its effects on seismic wave propagation play an important role in several techniques used in seismic exploration. The spreading can be estimated through dynamic ray tracing or determined from reflection traveltime derivatives. In the latter case, derivatives of nonhyperbolic moveout approximations are often used. We offer an alternative approach based on the weak-anisotropy approximation. The resulting formula is applicable to P-waves reflected from the bottom of a stack of horizontal layers, in which each layer can be of arbitrary anisotropy. At an arbitrary surface point, the formula depends, in each layer, on the thickness of the layer, on the P-wave reference velocity used for the construction of reference rays, and on nine P-wave weak-anisotropy (WA) parameters specifying the layer anisotropy. Along an arbitrary surface profile, the number of WA parameters reduces to five parameters related to the profile. WA parameters represent an alternative to the elastic moduli and, as such, can be used for the description of any anisotropy. The relative error of the approximate formula for a multilayered structure consisting of layers of anisotropy between 8% and 20% is, at most, 10%. For models including layers of anisotropy stronger than 20%, the relative errors may reach, locally, even 30%. For any offset, relative errors remain under a finite limit, which varies with the anisotropy strength.
Název v anglickém jazyce
Weak-anisotropy approximation of P-wave geometric spreading in horizontally layered anisotropic media of arbitrary symmetry: Tilted transversely isotropic specification
Popis výsledku anglicky
Understanding the role of geometric spreading and estimating its effects on seismic wave propagation play an important role in several techniques used in seismic exploration. The spreading can be estimated through dynamic ray tracing or determined from reflection traveltime derivatives. In the latter case, derivatives of nonhyperbolic moveout approximations are often used. We offer an alternative approach based on the weak-anisotropy approximation. The resulting formula is applicable to P-waves reflected from the bottom of a stack of horizontal layers, in which each layer can be of arbitrary anisotropy. At an arbitrary surface point, the formula depends, in each layer, on the thickness of the layer, on the P-wave reference velocity used for the construction of reference rays, and on nine P-wave weak-anisotropy (WA) parameters specifying the layer anisotropy. Along an arbitrary surface profile, the number of WA parameters reduces to five parameters related to the profile. WA parameters represent an alternative to the elastic moduli and, as such, can be used for the description of any anisotropy. The relative error of the approximate formula for a multilayered structure consisting of layers of anisotropy between 8% and 20% is, at most, 10%. For models including layers of anisotropy stronger than 20%, the relative errors may reach, locally, even 30%. For any offset, relative errors remain under a finite limit, which varies with the anisotropy strength.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10507 - Volcanology
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-05237S" target="_blank" >GA16-05237S: Seismické vlny v nehomogenních slabě anizotropních prostředích</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Geophysics
ISSN
0016-8033
e-ISSN
1942-2156
Svazek periodika
86
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
"C119"-"C132"
Kód UT WoS článku
000685070000002
EID výsledku v databázi Scopus
—