Estimating melt fraction in silicic systems using Bayesian inversion of magnetotelluric data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985530%3A_____%2F22%3A00557132" target="_blank" >RIV/67985530:_____/22:00557132 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0377027322000014" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0377027322000014</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jvolgeores.2022.107470" target="_blank" >10.1016/j.jvolgeores.2022.107470</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Estimating melt fraction in silicic systems using Bayesian inversion of magnetotelluric data
Popis výsledku v původním jazyce
The location, volume and physical states of magma reservoirs are primary controls on the eruptive behavior of volcanic systems. Fundamental to understanding and monitoring these systems is the ability to identify reservoir size and physical properties, in particular melt fraction which plays an important role in the rheology and stability of a magmatic system. Large silicic volcanic eruptions in the geological record suggest that extensive pockets of melt-rich silicic magma must exist in the subsurface but such melt pockets have not been detected by geophysics. This has led to the question of whether the reservoirs that feed large volcanic eruptions are only melt-rich for a short time and thus would only be detected by geophysics shortly prior to an eruption. Magnetotelluric data measure the electrical resistivity of the subsurface and are sensitive to subsurface fluids and partial melts making it a powerful tool for imaging subvolcanic magma reservoirs. This study examines the ability for magnetotelluric data to accurately estimate melt fraction using both stochastic Bayesian inversion and deterministic regularized inversion. Results from synthetic modelling indicate that magnetotelluric data are best able to predict the melt fraction for the thick melt-rich layer using both inversion methods, though both methods under-estimate the true amount of melt. In addition, magnetotelluric data can accurately detect changes in melt fraction from crystal rich mush (0.1 melt fraction) to melt-rich magma (0.9 melt fraction) for thick layers. Thickness is a key parameter which provides a method to assess the total volume of melt present, but it is difficult to estimate using smooth regularized inversions.
Název v anglickém jazyce
Estimating melt fraction in silicic systems using Bayesian inversion of magnetotelluric data
Popis výsledku anglicky
The location, volume and physical states of magma reservoirs are primary controls on the eruptive behavior of volcanic systems. Fundamental to understanding and monitoring these systems is the ability to identify reservoir size and physical properties, in particular melt fraction which plays an important role in the rheology and stability of a magmatic system. Large silicic volcanic eruptions in the geological record suggest that extensive pockets of melt-rich silicic magma must exist in the subsurface but such melt pockets have not been detected by geophysics. This has led to the question of whether the reservoirs that feed large volcanic eruptions are only melt-rich for a short time and thus would only be detected by geophysics shortly prior to an eruption. Magnetotelluric data measure the electrical resistivity of the subsurface and are sensitive to subsurface fluids and partial melts making it a powerful tool for imaging subvolcanic magma reservoirs. This study examines the ability for magnetotelluric data to accurately estimate melt fraction using both stochastic Bayesian inversion and deterministic regularized inversion. Results from synthetic modelling indicate that magnetotelluric data are best able to predict the melt fraction for the thick melt-rich layer using both inversion methods, though both methods under-estimate the true amount of melt. In addition, magnetotelluric data can accurately detect changes in melt fraction from crystal rich mush (0.1 melt fraction) to melt-rich magma (0.9 melt fraction) for thick layers. Thickness is a key parameter which provides a method to assess the total volume of melt present, but it is difficult to estimate using smooth regularized inversions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10507 - Volcanology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Volcanology and Geothermal Research
ISSN
0377-0273
e-ISSN
1872-6097
Svazek periodika
423
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
107470
Kód UT WoS článku
000764686300001
EID výsledku v databázi Scopus
2-s2.0-85122779667