Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Estimating melt fraction in silicic systems using Bayesian inversion of magnetotelluric data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985530%3A_____%2F22%3A00557132" target="_blank" >RIV/67985530:_____/22:00557132 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0377027322000014" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0377027322000014</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jvolgeores.2022.107470" target="_blank" >10.1016/j.jvolgeores.2022.107470</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Estimating melt fraction in silicic systems using Bayesian inversion of magnetotelluric data

  • Popis výsledku v původním jazyce

    The location, volume and physical states of magma reservoirs are primary controls on the eruptive behavior of volcanic systems. Fundamental to understanding and monitoring these systems is the ability to identify reservoir size and physical properties, in particular melt fraction which plays an important role in the rheology and stability of a magmatic system. Large silicic volcanic eruptions in the geological record suggest that extensive pockets of melt-rich silicic magma must exist in the subsurface but such melt pockets have not been detected by geophysics. This has led to the question of whether the reservoirs that feed large volcanic eruptions are only melt-rich for a short time and thus would only be detected by geophysics shortly prior to an eruption. Magnetotelluric data measure the electrical resistivity of the subsurface and are sensitive to subsurface fluids and partial melts making it a powerful tool for imaging subvolcanic magma reservoirs. This study examines the ability for magnetotelluric data to accurately estimate melt fraction using both stochastic Bayesian inversion and deterministic regularized inversion. Results from synthetic modelling indicate that magnetotelluric data are best able to predict the melt fraction for the thick melt-rich layer using both inversion methods, though both methods under-estimate the true amount of melt. In addition, magnetotelluric data can accurately detect changes in melt fraction from crystal rich mush (0.1 melt fraction) to melt-rich magma (0.9 melt fraction) for thick layers. Thickness is a key parameter which provides a method to assess the total volume of melt present, but it is difficult to estimate using smooth regularized inversions.

  • Název v anglickém jazyce

    Estimating melt fraction in silicic systems using Bayesian inversion of magnetotelluric data

  • Popis výsledku anglicky

    The location, volume and physical states of magma reservoirs are primary controls on the eruptive behavior of volcanic systems. Fundamental to understanding and monitoring these systems is the ability to identify reservoir size and physical properties, in particular melt fraction which plays an important role in the rheology and stability of a magmatic system. Large silicic volcanic eruptions in the geological record suggest that extensive pockets of melt-rich silicic magma must exist in the subsurface but such melt pockets have not been detected by geophysics. This has led to the question of whether the reservoirs that feed large volcanic eruptions are only melt-rich for a short time and thus would only be detected by geophysics shortly prior to an eruption. Magnetotelluric data measure the electrical resistivity of the subsurface and are sensitive to subsurface fluids and partial melts making it a powerful tool for imaging subvolcanic magma reservoirs. This study examines the ability for magnetotelluric data to accurately estimate melt fraction using both stochastic Bayesian inversion and deterministic regularized inversion. Results from synthetic modelling indicate that magnetotelluric data are best able to predict the melt fraction for the thick melt-rich layer using both inversion methods, though both methods under-estimate the true amount of melt. In addition, magnetotelluric data can accurately detect changes in melt fraction from crystal rich mush (0.1 melt fraction) to melt-rich magma (0.9 melt fraction) for thick layers. Thickness is a key parameter which provides a method to assess the total volume of melt present, but it is difficult to estimate using smooth regularized inversions.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10507 - Volcanology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Volcanology and Geothermal Research

  • ISSN

    0377-0273

  • e-ISSN

    1872-6097

  • Svazek periodika

    423

  • Číslo periodika v rámci svazku

    March

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    12

  • Strana od-do

    107470

  • Kód UT WoS článku

    000764686300001

  • EID výsledku v databázi Scopus

    2-s2.0-85122779667