Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Arrival times by Recurrent Neural Network for induced seismic events from a permanent network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985530%3A_____%2F23%3A00574165" target="_blank" >RIV/67985530:_____/23:00574165 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.frontiersin.org/articles/10.3389/fdata.2023.1174478/full" target="_blank" >https://www.frontiersin.org/articles/10.3389/fdata.2023.1174478/full</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3389/fdata.2023.1174478" target="_blank" >10.3389/fdata.2023.1174478</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Arrival times by Recurrent Neural Network for induced seismic events from a permanent network

  • Popis výsledku v původním jazyce

    We have developed a Recurrent Neural Network (RNN)-based phase picker for data obtained from a local seismic monitoring array specifically designated for induced seismicity analysis. The proposed algorithm was rigorously tested using real-world data from a network encompassing nine three-component stations. The algorithm is designed for multiple monitoring of repeated injection within the permanent array. For such an array, the RNN is initially trained on a foundational dataset, enabling the trained algorithm to accurately identify other induced events even if they occur in different regions of the array. Our RNN-based phase picker achieved an accuracy exceeding 80% for arrival time picking when compared to precise manual picking techniques. However, the event locations (based on the arrival picking) had to be further constrained to avoid false arrival picks. By utilizing these refined arrival times, we were able to locate seismic events and assess their magnitudes. The magnitudes of events processed automatically exhibited a discrepancy of up to 0.3 when juxtaposed with those derived from manual processing. Importantly, the efficacy of our results remains consistent irrespective of the specific training dataset employed, provided that the dataset originates from within the network.

  • Název v anglickém jazyce

    Arrival times by Recurrent Neural Network for induced seismic events from a permanent network

  • Popis výsledku anglicky

    We have developed a Recurrent Neural Network (RNN)-based phase picker for data obtained from a local seismic monitoring array specifically designated for induced seismicity analysis. The proposed algorithm was rigorously tested using real-world data from a network encompassing nine three-component stations. The algorithm is designed for multiple monitoring of repeated injection within the permanent array. For such an array, the RNN is initially trained on a foundational dataset, enabling the trained algorithm to accurately identify other induced events even if they occur in different regions of the array. Our RNN-based phase picker achieved an accuracy exceeding 80% for arrival time picking when compared to precise manual picking techniques. However, the event locations (based on the arrival picking) had to be further constrained to avoid false arrival picks. By utilizing these refined arrival times, we were able to locate seismic events and assess their magnitudes. The magnitudes of events processed automatically exhibited a discrepancy of up to 0.3 when juxtaposed with those derived from manual processing. Importantly, the efficacy of our results remains consistent irrespective of the specific training dataset employed, provided that the dataset originates from within the network.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10507 - Volcanology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Frontiers in Big Data

  • ISSN

    2624-909X

  • e-ISSN

    2624-909X

  • Svazek periodika

    6

  • Číslo periodika v rámci svazku

    August

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    12

  • Strana od-do

    1174478

  • Kód UT WoS článku

    001049567200001

  • EID výsledku v databázi Scopus

    2-s2.0-85168363271