Strain localization: analog modeling and anisotropy of magnetic susceptibility
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985530%3A_____%2F23%3A00574301" target="_blank" >RIV/67985530:_____/23:00574301 - isvavai.cz</a>
Výsledek na webu
<a href="https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022GC010630" target="_blank" >https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022GC010630</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1029/2022GC010630" target="_blank" >10.1029/2022GC010630</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Strain localization: analog modeling and anisotropy of magnetic susceptibility
Popis výsledku v původním jazyce
The majority of the strain in Earth crust and upper mantle is localized to the high strain zones developed at ductile-to-brittle condition at kilometer-to-micrometer scale. Therefore, they represent the key to understanding the deformation evolution of the lithosphere. The finite strain pattern recorded within these zones has been therefore a subject of research in geology. The methods studying rock magnetism such as the anisotropy of magnetic susceptibility (AMS) are frequently used techniques to characterize and quantify deformation and flow record in rocks. Numerous sedimentary, subsolidus and submagmatic deformation zones exhibit typical evolution of the AMS ellipsoid across the strain gradient suggesting indirect not straightforward correlation between AMS and strain ellipsoids. To document spatiotemporal and internal fabric evolution during strain localization, pure shear, simple shear, and shear zone (SZ) analog experiments were performed using shear-thinning thixotropic material of plaster of Paris. The experimental results closely resemble the record from natural SZs in sedimentary rock systems but also in subsolidus SZs and submagmatic mushy systems. The magnetic fabric evolution across deformation zones is interpreted to be associated with the intersection and transposition of preexisting primary fabric with shear fabrics and evolution of synkinematic subfabrics. Their development is attributed to localization of deformation at microscale due to the self-organized slip of anisometric particles forming microshear planes reflecting the symmetry of deformation. The experimental results when confronted with the natural examples implies that the localization and partitioning of deformation is one of the most important factors for the interpretation of AMS in deformation zones.
Název v anglickém jazyce
Strain localization: analog modeling and anisotropy of magnetic susceptibility
Popis výsledku anglicky
The majority of the strain in Earth crust and upper mantle is localized to the high strain zones developed at ductile-to-brittle condition at kilometer-to-micrometer scale. Therefore, they represent the key to understanding the deformation evolution of the lithosphere. The finite strain pattern recorded within these zones has been therefore a subject of research in geology. The methods studying rock magnetism such as the anisotropy of magnetic susceptibility (AMS) are frequently used techniques to characterize and quantify deformation and flow record in rocks. Numerous sedimentary, subsolidus and submagmatic deformation zones exhibit typical evolution of the AMS ellipsoid across the strain gradient suggesting indirect not straightforward correlation between AMS and strain ellipsoids. To document spatiotemporal and internal fabric evolution during strain localization, pure shear, simple shear, and shear zone (SZ) analog experiments were performed using shear-thinning thixotropic material of plaster of Paris. The experimental results closely resemble the record from natural SZs in sedimentary rock systems but also in subsolidus SZs and submagmatic mushy systems. The magnetic fabric evolution across deformation zones is interpreted to be associated with the intersection and transposition of preexisting primary fabric with shear fabrics and evolution of synkinematic subfabrics. Their development is attributed to localization of deformation at microscale due to the self-organized slip of anisometric particles forming microshear planes reflecting the symmetry of deformation. The experimental results when confronted with the natural examples implies that the localization and partitioning of deformation is one of the most important factors for the interpretation of AMS in deformation zones.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10505 - Geology
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-12828S" target="_blank" >GA22-12828S: Nový pohled na interpretaci magnetických staveb za pomoci 3D mikrostrukturní analýzy, numerického modelování a kvantově mechanického popisu</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Geochemistry, Geophysics, Geosystems
ISSN
1525-2027
e-ISSN
1525-2027
Svazek periodika
24
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
e2022GC010630
Kód UT WoS článku
001032220100001
EID výsledku v databázi Scopus
2-s2.0-85148541802