Strictly modular probabilistic neural networks for pattern recognition.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F03%3A16030252" target="_blank" >RIV/67985556:_____/03:16030252 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61384399:31160/03:00018232
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Strictly modular probabilistic neural networks for pattern recognition.
Popis výsledku v původním jazyce
Considering the statistical pattern recognition we approximate the unknown class-conditional probability distributions by multivariate Bernoulli mixtures. We show that both the parameter optimization based on EM algorithm and the resulting Bayesian decision-making can be realized by a strictly modular probabilistic neural network. The autonomous adaptation of neurons includes only the locally available information. The properties of the sequential learning procedure are illustrated by numerical examples.
Název v anglickém jazyce
Strictly modular probabilistic neural networks for pattern recognition.
Popis výsledku anglicky
Considering the statistical pattern recognition we approximate the unknown class-conditional probability distributions by multivariate Bernoulli mixtures. We show that both the parameter optimization based on EM algorithm and the resulting Bayesian decision-making can be realized by a strictly modular probabilistic neural network. The autonomous adaptation of neurons includes only the locally available information. The properties of the sequential learning procedure are illustrated by numerical examples.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2003
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Network World
ISSN
1210-0552
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
17
Strana od-do
599-615
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—