Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Extrakce binárních příznaků pomocí pravděpodobnostních neuronových sítí

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F08%3A00311211" target="_blank" >RIV/67985556:_____/08:00311211 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61384399:31160/08:00031161

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Extraction of Binary Features by Probabilistic Neural Networks

  • Popis výsledku v původním jazyce

    In order to design probabilistic neural networks in the framework of pattern recognition we estimate class-conditional probability distributions in the form of finite mixtures of product components. As the mixture components correspond to neurons we specify the properties of neurons in terms of component parameters. The probabilistic features defined by neuron outputs can be used to transform the classification problem without information loss and, simultaneously, the Shannon entropy of the feature space is minimized. We show that, instead of dimensionality reduction, the decision problem can be simplified by using binary approximation of the probabilistic features. In experiments the resulting binary features improve recognition accuracy but also theyare nearly independent - in accordance with the minimum entropy property.

  • Název v anglickém jazyce

    Extraction of Binary Features by Probabilistic Neural Networks

  • Popis výsledku anglicky

    In order to design probabilistic neural networks in the framework of pattern recognition we estimate class-conditional probability distributions in the form of finite mixtures of product components. As the mixture components correspond to neurons we specify the properties of neurons in terms of component parameters. The probabilistic features defined by neuron outputs can be used to transform the classification problem without information loss and, simultaneously, the Shannon entropy of the feature space is minimized. We show that, instead of dimensionality reduction, the decision problem can be simplified by using binary approximation of the probabilistic features. In experiments the resulting binary features improve recognition accuracy but also theyare nearly independent - in accordance with the minimum entropy property.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2008

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Artificial Neural Networks - ICANN 2008

  • ISBN

    978-3-540-87558-1

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

  • Název nakladatele

    Springer

  • Místo vydání

    Berlin

  • Místo konání akce

    Prague

  • Datum konání akce

    3. 9. 2008

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000259567200006