Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Simultanous search for all modes in multilinear models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F10%3A00341572" target="_blank" >RIV/67985556:_____/10:00341572 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Simultanous search for all modes in multilinear models

  • Popis výsledku v původním jazyce

    Parallel factor (PARAFAC) analysis is an extension of a low rank decomposition to higher way arrays, usually called tensors. Most of existing methods are based on an alternating least square (ALS) algorithm that proceeds iteratively, and minimizes a criterion (that is usually quadratic) of the fit with respect to individual factors one by one. Convergence of this approach is known to be slow, if some of the factor contain nearly co-linear vectors. This problem can be partly alleviated by an enhanced line search (ELS) by Rajih et al. (2008). In this paper we show that the method originally proposed by Paatero (1997), consisting in optimization with respect to all modes simultaneously, can be simplified, and can far outperform the ALS-ELS in ill--conditioned data in all modes.

  • Název v anglickém jazyce

    Simultanous search for all modes in multilinear models

  • Popis výsledku anglicky

    Parallel factor (PARAFAC) analysis is an extension of a low rank decomposition to higher way arrays, usually called tensors. Most of existing methods are based on an alternating least square (ALS) algorithm that proceeds iteratively, and minimizes a criterion (that is usually quadratic) of the fit with respect to individual factors one by one. Convergence of this approach is known to be slow, if some of the factor contain nearly co-linear vectors. This problem can be partly alleviated by an enhanced line search (ELS) by Rajih et al. (2008). In this paper we show that the method originally proposed by Paatero (1997), consisting in optimization with respect to all modes simultaneously, can be simplified, and can far outperform the ALS-ELS in ill--conditioned data in all modes.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BB - Aplikovaná statistika, operační výzkum

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing 2010

  • ISBN

    978-1-4244-4296-6

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

  • Název nakladatele

    IEEE

  • Místo vydání

    Dallas

  • Místo konání akce

    Dallas, TX

  • Datum konání akce

    14. 3. 2010

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku