Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Improvements of Continuous Model for Memory-based Automatic Music Transcription

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F10%3A00347257" target="_blank" >RIV/67985556:_____/10:00347257 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Improvements of Continuous Model for Memory-based Automatic Music Transcription

  • Popis výsledku v původním jazyce

    Automatic music transcription is a process recovering the most likely combination of sounds that produced the recorded audio signal. We are concerned with memory-based approach, where the observed signal is modeled as a superposition of sounds from a library. Moreover, we assume that only parts of the sounds can be played. The number of possible combinations is excessive and exact estimation is computationally prohibitive. We propose to transform the original discrete-event model into a less restrictedparametrization and impose the constraints in a soft way via prior information. The resulting model is a non-linear state-space model with Gaussian disturbances. The posterior estimates are evaluated by the extended Kalman filter. Performance of the model is studied in simulation and it is shown that it outperforms previously published methods.

  • Název v anglickém jazyce

    Improvements of Continuous Model for Memory-based Automatic Music Transcription

  • Popis výsledku anglicky

    Automatic music transcription is a process recovering the most likely combination of sounds that produced the recorded audio signal. We are concerned with memory-based approach, where the observed signal is modeled as a superposition of sounds from a library. Moreover, we assume that only parts of the sounds can be played. The number of possible combinations is excessive and exact estimation is computationally prohibitive. We propose to transform the original discrete-event model into a less restrictedparametrization and impose the constraints in a soft way via prior information. The resulting model is a non-linear state-space model with Gaussian disturbances. The posterior estimates are evaluated by the extended Kalman filter. Performance of the model is studied in simulation and it is shown that it outperforms previously published methods.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BD - Teorie informace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GP102%2F08%2FP250" target="_blank" >GP102/08/P250: Metody sekvenčního vzorkování pro identifikaci a řízení distribuovaných systémů</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 18th European signal processing conference

  • ISBN

  • ISSN

    2076-1465

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

  • Název nakladatele

    Eurasip

  • Místo vydání

    Aalborg

  • Místo konání akce

    Aalborg

  • Datum konání akce

    23. 7. 2010

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku