Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Weight adjusted tensor method for blind separation of underdetermined mixtures of nonstationary sources

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F11%3A00356666" target="_blank" >RIV/67985556:_____/11:00356666 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/46747885:24220/11:#0001964

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Weight adjusted tensor method for blind separation of underdetermined mixtures of nonstationary sources

  • Popis výsledku v původním jazyce

    In this paper, a novel algorithm to blindly separate an instantaneous linear underdetermined mixture of nonstationary sources is proposed. The separation is based on the working assumption that the sources are piecewise stationary with a different variance in each block. It proceeds in two steps: (1) estimating the mixing matrix, and (2) computing the optimum beamformer in each block to maximize the signal-to-interference ratio of each separated signal. Estimating the mixing matrix is accomplished through a specialized tensor decomposition of the set of sample covariance matrices of the received mixture in each block. It utilizes optimum weighting, which allows statistically efficient (CRB attaining) estimation provided that the data obey the assumed Gaussian piecewise stationary model. In simulations, performance of the algorithm is successfully tested on blind separation of 16 speech signals from 9 linear instantaneous mixtures of these signals.

  • Název v anglickém jazyce

    Weight adjusted tensor method for blind separation of underdetermined mixtures of nonstationary sources

  • Popis výsledku anglicky

    In this paper, a novel algorithm to blindly separate an instantaneous linear underdetermined mixture of nonstationary sources is proposed. The separation is based on the working assumption that the sources are piecewise stationary with a different variance in each block. It proceeds in two steps: (1) estimating the mixing matrix, and (2) computing the optimum beamformer in each block to maximize the signal-to-interference ratio of each separated signal. Estimating the mixing matrix is accomplished through a specialized tensor decomposition of the set of sample covariance matrices of the received mixture in each block. It utilizes optimum weighting, which allows statistically efficient (CRB attaining) estimation provided that the data obey the assumed Gaussian piecewise stationary model. In simulations, performance of the algorithm is successfully tested on blind separation of 16 speech signals from 9 linear instantaneous mixtures of these signals.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BB - Aplikovaná statistika, operační výzkum

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2011

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Signal Processing

  • ISSN

    1053-587X

  • e-ISSN

  • Svazek periodika

    59

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

  • Kód UT WoS článku

    000287316500014

  • EID výsledku v databázi Scopus