Intertwining of birth-and-death processes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F11%3A00357433" target="_blank" >RIV/67985556:_____/11:00357433 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Intertwining of birth-and-death processes
Popis výsledku v původním jazyce
It has been known for a long time that for birth-and-death processes started in zero the first passage time of a given level is distributed as a sum of independent exponentially distributed random variables, the parameters of which are the negatives of the eigenvalues of the stopped process. Recently, Diaconis and Miclo have given a probabilistic proof of this fact by constructing a coupling between a general birth-and-death process and a process whose birth rates are the negatives of the eigenvalues, ordered from high to low, and whose death rates are zero, in such a way that the latter process is always ahead of the former, and both arrive at the same time at the given level. In this note, we extend their methods by constructing a third process, whose birth rates are the negatives of the eigenvalues ordered from low to high and whose death rates are zero, which always lags behind the original process and also arrives at the same time.
Název v anglickém jazyce
Intertwining of birth-and-death processes
Popis výsledku anglicky
It has been known for a long time that for birth-and-death processes started in zero the first passage time of a given level is distributed as a sum of independent exponentially distributed random variables, the parameters of which are the negatives of the eigenvalues of the stopped process. Recently, Diaconis and Miclo have given a probabilistic proof of this fact by constructing a coupling between a general birth-and-death process and a process whose birth rates are the negatives of the eigenvalues, ordered from high to low, and whose death rates are zero, in such a way that the latter process is always ahead of the former, and both arrive at the same time at the given level. In this note, we extend their methods by constructing a third process, whose birth rates are the negatives of the eigenvalues ordered from low to high and whose death rates are zero, which always lags behind the original process and also arrives at the same time.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F09%2F1931" target="_blank" >GA201/09/1931: Velké interagující systémy na mřížce: Gibbsovy stavy a fázové přechody</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Kybernetika
ISSN
0023-5954
e-ISSN
—
Svazek periodika
47
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
000288625300001
EID výsledku v databázi Scopus
—