Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Intertwining of birth-and-death processes

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F11%3A00357433" target="_blank" >RIV/67985556:_____/11:00357433 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Intertwining of birth-and-death processes

  • Popis výsledku v původním jazyce

    It has been known for a long time that for birth-and-death processes started in zero the first passage time of a given level is distributed as a sum of independent exponentially distributed random variables, the parameters of which are the negatives of the eigenvalues of the stopped process. Recently, Diaconis and Miclo have given a probabilistic proof of this fact by constructing a coupling between a general birth-and-death process and a process whose birth rates are the negatives of the eigenvalues, ordered from high to low, and whose death rates are zero, in such a way that the latter process is always ahead of the former, and both arrive at the same time at the given level. In this note, we extend their methods by constructing a third process, whose birth rates are the negatives of the eigenvalues ordered from low to high and whose death rates are zero, which always lags behind the original process and also arrives at the same time.

  • Název v anglickém jazyce

    Intertwining of birth-and-death processes

  • Popis výsledku anglicky

    It has been known for a long time that for birth-and-death processes started in zero the first passage time of a given level is distributed as a sum of independent exponentially distributed random variables, the parameters of which are the negatives of the eigenvalues of the stopped process. Recently, Diaconis and Miclo have given a probabilistic proof of this fact by constructing a coupling between a general birth-and-death process and a process whose birth rates are the negatives of the eigenvalues, ordered from high to low, and whose death rates are zero, in such a way that the latter process is always ahead of the former, and both arrive at the same time at the given level. In this note, we extend their methods by constructing a third process, whose birth rates are the negatives of the eigenvalues ordered from low to high and whose death rates are zero, which always lags behind the original process and also arrives at the same time.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA201%2F09%2F1931" target="_blank" >GA201/09/1931: Velké interagující systémy na mřížce: Gibbsovy stavy a fázové přechody</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2011

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Kybernetika

  • ISSN

    0023-5954

  • e-ISSN

  • Svazek periodika

    47

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    14

  • Strana od-do

  • Kód UT WoS článku

    000288625300001

  • EID výsledku v databázi Scopus