Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Strong practical stability and stabilization of uncertain discrete linear repetitive processes

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F13%3A00391865" target="_blank" >RIV/67985556:_____/13:00391865 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1002/nla.812" target="_blank" >http://dx.doi.org/10.1002/nla.812</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/nla.812" target="_blank" >10.1002/nla.812</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Strong practical stability and stabilization of uncertain discrete linear repetitive processes

  • Popis výsledku v původním jazyce

    Repetitive processes are a distinct class of 2D systems of both theoretical and practical interest. The stability theory for these processes originally consisted of two distinct concepts termed asymptotic stability and stability along the pass, respectively, where the former is a necessary condition for the latter. Recently applications have arisen where asymptotic stability is too weak, and stability along the pass is too strong for meaningful progress to be made. This, in turn, has led to the conceptof strong practical stability for such cases, where previous work has formulated this property and obtained necessary and sufficient conditions for its existence together with Linear Matrix Inequality based tests, which then extend to allow robust control law design. This paper develops considerably simpler, and hence computationally more efficient, stability tests that also extend to allow control law design.

  • Název v anglickém jazyce

    Strong practical stability and stabilization of uncertain discrete linear repetitive processes

  • Popis výsledku anglicky

    Repetitive processes are a distinct class of 2D systems of both theoretical and practical interest. The stability theory for these processes originally consisted of two distinct concepts termed asymptotic stability and stability along the pass, respectively, where the former is a necessary condition for the latter. Recently applications have arisen where asymptotic stability is too weak, and stability along the pass is too strong for meaningful progress to be made. This, in turn, has led to the conceptof strong practical stability for such cases, where previous work has formulated this property and obtained necessary and sufficient conditions for its existence together with Linear Matrix Inequality based tests, which then extend to allow robust control law design. This paper develops considerably simpler, and hence computationally more efficient, stability tests that also extend to allow control law design.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BC - Teorie a systémy řízení

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/1M0567" target="_blank" >1M0567: Centrum aplikované kybernetiky</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Numerical Linear Algebra with Applications

  • ISSN

    1070-5325

  • e-ISSN

  • Svazek periodika

    20

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    14

  • Strana od-do

    220-233

  • Kód UT WoS článku

    000314985700006

  • EID výsledku v databázi Scopus