A New Approach to Interval-Valued Choquet Integrals and the Problem of Ordering in Interval-Valued Fuzzy Set Applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F13%3A00399771" target="_blank" >RIV/67985556:_____/13:00399771 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/TFUZZ.2013.2265090" target="_blank" >http://dx.doi.org/10.1109/TFUZZ.2013.2265090</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TFUZZ.2013.2265090" target="_blank" >10.1109/TFUZZ.2013.2265090</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A New Approach to Interval-Valued Choquet Integrals and the Problem of Ordering in Interval-Valued Fuzzy Set Applications
Popis výsledku v původním jazyce
We consider the problem of choosing a total order between intervals in multiexpert decision making problems. To do so, we first start researching the additivity of interval-valued aggregation functions. Next, we briefly treat the problem of preserving admissible orders by linear transformations.We study the construction of interval-valued ordered weighted aggregation operators by means of admissible orders and discuss their properties. In this setting, we present the definition of an interval-valued Choquet integral with respect to an admissible order based on an admissible pair of aggregation functions. The importance of the definition of the Choquet integral, which is introduced by us here, lies in the fact that if the considered data are pointwise (i.e., if they are not proper intervals), then it recovers the classical concept of this aggregation. Next, we show that if we make use of intervals in multiexpert decision making problems, then the solution at which we arrive may depend o
Název v anglickém jazyce
A New Approach to Interval-Valued Choquet Integrals and the Problem of Ordering in Interval-Valued Fuzzy Set Applications
Popis výsledku anglicky
We consider the problem of choosing a total order between intervals in multiexpert decision making problems. To do so, we first start researching the additivity of interval-valued aggregation functions. Next, we briefly treat the problem of preserving admissible orders by linear transformations.We study the construction of interval-valued ordered weighted aggregation operators by means of admissible orders and discuss their properties. In this setting, we present the definition of an interval-valued Choquet integral with respect to an admissible order based on an admissible pair of aggregation functions. The importance of the definition of the Choquet integral, which is introduced by us here, lies in the fact that if the considered data are pointwise (i.e., if they are not proper intervals), then it recovers the classical concept of this aggregation. Next, we show that if we make use of intervals in multiexpert decision making problems, then the solution at which we arrive may depend o
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP402%2F11%2F0378" target="_blank" >GAP402/11/0378: Agregace znalostí a očekávání v matematicko-ekonomických modelech</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Fuzzy Systems
ISSN
1063-6706
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
1150-1162
Kód UT WoS článku
000328049100013
EID výsledku v databázi Scopus
—