Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Feasibility Study of an Interactive Medical Diagnostic Wikipedia

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F16%3A00464681" target="_blank" >RIV/67985556:_____/16:00464681 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61384399:31160/16:00049988

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Feasibility Study of an Interactive Medical Diagnostic Wikipedia

  • Popis výsledku v původním jazyce

    Considering different application possibilities of product distribution mixtures we have proposed three formal tools in the last years, which can be used to accumulate decision-making know-how from particular diagnostic cases. First, we have developed a structural mixture model to estimate multidimensional probability distributions from incomplete and possibly weighted data vectors. Second, we have shown that the estimated product mixture can be used as a knowledge base for the Probabilistic Expert System (PES) to infer conclusions from definite or even uncertain input information. Finally we have shown that, by using product mixtures, we can exactly optimize sequential decision-making by means of the Shannon formula of conditional informativity. We combine the above statistical tools in the framework of an interactive open-access medical diagnostic system with automatic accumulation of decision-making knowledge.

  • Název v anglickém jazyce

    Feasibility Study of an Interactive Medical Diagnostic Wikipedia

  • Popis výsledku anglicky

    Considering different application possibilities of product distribution mixtures we have proposed three formal tools in the last years, which can be used to accumulate decision-making know-how from particular diagnostic cases. First, we have developed a structural mixture model to estimate multidimensional probability distributions from incomplete and possibly weighted data vectors. Second, we have shown that the estimated product mixture can be used as a knowledge base for the Probabilistic Expert System (PES) to infer conclusions from definite or even uncertain input information. Finally we have shown that, by using product mixtures, we can exactly optimize sequential decision-making by means of the Shannon formula of conditional informativity. We combine the above statistical tools in the framework of an interactive open-access medical diagnostic system with automatic accumulation of decision-making knowledge.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    SPMS 2016 Stochastic and Physical Monitoring Systems

  • ISBN

    978-80-01-06040-7

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    15

  • Strana od-do

  • Název nakladatele

    Czech Technical University

  • Místo vydání

    Prague

  • Místo konání akce

    Prague - Dobřichovice

  • Datum konání akce

    20. 6. 2016

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku