Semiparametric nonlinear quantile regression model for financial returns
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00472346" target="_blank" >RIV/67985556:_____/17:00472346 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1515/snde-2016-0044" target="_blank" >http://dx.doi.org/10.1515/snde-2016-0044</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/snde-2016-0044" target="_blank" >10.1515/snde-2016-0044</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semiparametric nonlinear quantile regression model for financial returns
Popis výsledku v původním jazyce
Accurately measuring and forecasting value-at-risk (VaR) remains a challenging task at the heart of financial economic theory. Recently, quantile regression models have been used successfully to capture the conditional quantiles of returns and to forecast VaR accurately. In this paper, we further explore nonlineari- ties in data and propose to couple realized measures with the nonlinear quantile regression framework to explain and forecast the conditional quantiles of financial returns. The nonlinear quantile regression models are implied by the copula specifications and allow us to capture possible nonlinearities, tail dependence, and asymmetries in the conditional quantiles of financial returns. Using high frequency data that covers most liquid US stocks in seven sectors, we provide ample evidence of asymmetric conditional dependence with dif- ferent levels of dependence, which are characteristic for each industry. The backtesting results of estimated VaR favour our approach.
Název v anglickém jazyce
Semiparametric nonlinear quantile regression model for financial returns
Popis výsledku anglicky
Accurately measuring and forecasting value-at-risk (VaR) remains a challenging task at the heart of financial economic theory. Recently, quantile regression models have been used successfully to capture the conditional quantiles of returns and to forecast VaR accurately. In this paper, we further explore nonlineari- ties in data and propose to couple realized measures with the nonlinear quantile regression framework to explain and forecast the conditional quantiles of financial returns. The nonlinear quantile regression models are implied by the copula specifications and allow us to capture possible nonlinearities, tail dependence, and asymmetries in the conditional quantiles of financial returns. Using high frequency data that covers most liquid US stocks in seven sectors, we provide ample evidence of asymmetric conditional dependence with dif- ferent levels of dependence, which are characteristic for each industry. The backtesting results of estimated VaR favour our approach.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP402%2F12%2FG097" target="_blank" >GBP402/12/G097: DYME-Dynamické modely v ekonomii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Studies in Nonlinear Dynamics and Econometrics
ISSN
1081-1826
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
81-97
Kód UT WoS článku
000394467800006
EID výsledku v databázi Scopus
2-s2.0-85013269709