Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Semiparametric nonlinear quantile regression model for financial returns

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00472346" target="_blank" >RIV/67985556:_____/17:00472346 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1515/snde-2016-0044" target="_blank" >http://dx.doi.org/10.1515/snde-2016-0044</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/snde-2016-0044" target="_blank" >10.1515/snde-2016-0044</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Semiparametric nonlinear quantile regression model for financial returns

  • Popis výsledku v původním jazyce

    Accurately measuring and forecasting value-at-risk (VaR) remains a challenging task at the heart of financial economic theory. Recently, quantile regression models have been used successfully to capture the conditional quantiles of returns and to forecast VaR accurately. In this paper, we further explore nonlineari- ties in data and propose to couple realized measures with the nonlinear quantile regression framework to explain and forecast the conditional quantiles of financial returns. The nonlinear quantile regression models are implied by the copula specifications and allow us to capture possible nonlinearities, tail dependence, and asymmetries in the conditional quantiles of financial returns. Using high frequency data that covers most liquid US stocks in seven sectors, we provide ample evidence of asymmetric conditional dependence with dif- ferent levels of dependence, which are characteristic for each industry. The backtesting results of estimated VaR favour our approach.

  • Název v anglickém jazyce

    Semiparametric nonlinear quantile regression model for financial returns

  • Popis výsledku anglicky

    Accurately measuring and forecasting value-at-risk (VaR) remains a challenging task at the heart of financial economic theory. Recently, quantile regression models have been used successfully to capture the conditional quantiles of returns and to forecast VaR accurately. In this paper, we further explore nonlineari- ties in data and propose to couple realized measures with the nonlinear quantile regression framework to explain and forecast the conditional quantiles of financial returns. The nonlinear quantile regression models are implied by the copula specifications and allow us to capture possible nonlinearities, tail dependence, and asymmetries in the conditional quantiles of financial returns. Using high frequency data that covers most liquid US stocks in seven sectors, we provide ample evidence of asymmetric conditional dependence with dif- ferent levels of dependence, which are characteristic for each industry. The backtesting results of estimated VaR favour our approach.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50202 - Applied Economics, Econometrics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GBP402%2F12%2FG097" target="_blank" >GBP402/12/G097: DYME-Dynamické modely v ekonomii</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Studies in Nonlinear Dynamics and Econometrics

  • ISSN

    1081-1826

  • e-ISSN

  • Svazek periodika

    21

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    17

  • Strana od-do

    81-97

  • Kód UT WoS článku

    000394467800006

  • EID výsledku v databázi Scopus

    2-s2.0-85013269709