Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Performance of Kullback-Leibler Based Expert Opinion Pooling for Unlikely Events

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00479432" target="_blank" >RIV/67985556:_____/17:00479432 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Performance of Kullback-Leibler Based Expert Opinion Pooling for Unlikely Events

  • Popis výsledku v původním jazyce

    The aggregation of available information is of great importance in many branches of economics,nsocial sciences. Often, we can only rely on experts’ opinions, i.e. probabilities assigned to possible events. To deal with opinions in probabilistic form, we focus on the Kullback-Leibler (KL) divergence based pools: linear, logarithmic and KL-pool (Seckarova, 2015). Since occurrence of events is subject to random influences of the real world, it is important to address events assigned lower probabilities (unlikely events). This is done by choosing pooling with a higher entropy than standard linear or logarithmic options, i.e. the KL-pool. We show how well the mentioned pools perform on real data using absolute error, KL-divergence and quadratic reward. In cases favoring events assigned higher probabilities, the KL-pool performs similarly to the linear pool and outperforms the logarithmic pool. When unlikely events occur, the KL-pool outperforms both pools, which makes it a reasonable way of pooling.n

  • Název v anglickém jazyce

    Performance of Kullback-Leibler Based Expert Opinion Pooling for Unlikely Events

  • Popis výsledku anglicky

    The aggregation of available information is of great importance in many branches of economics,nsocial sciences. Often, we can only rely on experts’ opinions, i.e. probabilities assigned to possible events. To deal with opinions in probabilistic form, we focus on the Kullback-Leibler (KL) divergence based pools: linear, logarithmic and KL-pool (Seckarova, 2015). Since occurrence of events is subject to random influences of the real world, it is important to address events assigned lower probabilities (unlikely events). This is done by choosing pooling with a higher entropy than standard linear or logarithmic options, i.e. the KL-pool. We show how well the mentioned pools perform on real data using absolute error, KL-divergence and quadratic reward. In cases favoring events assigned higher probabilities, the KL-pool performs similarly to the linear pool and outperforms the logarithmic pool. When unlikely events occur, the KL-pool outperforms both pools, which makes it a reasonable way of pooling.n

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA16-09848S" target="_blank" >GA16-09848S: Racionalita a uvažování</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the NIPS 2016 Workshop on Imperfect Decision Makers

  • ISBN

  • ISSN

    1938-7228

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    41-50

  • Název nakladatele

    JMLR

  • Místo vydání

    Cambridge

  • Místo konání akce

    Barcelona

  • Datum konání akce

    9. 12. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku