Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Representations of Bayesian Networks by Low-Rank Models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00493355" target="_blank" >RIV/67985556:_____/18:00493355 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Representations of Bayesian Networks by Low-Rank Models

  • Popis výsledku v původním jazyce

    Conditional probability tables (CPTs) of discrete valued random variables may achieve high dimensions and Bayesian networks defined as the product of these CPTs may become intractable by conventional methods of BN inference because of their dimensionality. In many cases, however, these probability tables constitute tensors of relatively low rank. Such tensors can be written in the so-called Kruskal form as a sum of rank-one components. Such representation would be equivalent to adding one artificial parent to all random variables and deleting all edges between the variables. The most difficult task is to find such a representation given a set of marginals or CPTs of the random variables under consideration. In the former case, it is a problem of joint canonical polyadic (CP) decomposition of a set of tensors. The latter fitting problem can be solved in a similar manner. We apply a recently proposed alternating direction method of multipliers (ADMM), which assures that the model has a probabilistic interpretation, i.e., that all elements of all factor matrices are nonnegative. We perform experiments with several well-known Bayesian networks.nn

  • Název v anglickém jazyce

    Representations of Bayesian Networks by Low-Rank Models

  • Popis výsledku anglicky

    Conditional probability tables (CPTs) of discrete valued random variables may achieve high dimensions and Bayesian networks defined as the product of these CPTs may become intractable by conventional methods of BN inference because of their dimensionality. In many cases, however, these probability tables constitute tensors of relatively low rank. Such tensors can be written in the so-called Kruskal form as a sum of rank-one components. Such representation would be equivalent to adding one artificial parent to all random variables and deleting all edges between the variables. The most difficult task is to find such a representation given a set of marginals or CPTs of the random variables under consideration. In the former case, it is a problem of joint canonical polyadic (CP) decomposition of a set of tensors. The latter fitting problem can be solved in a similar manner. We apply a recently proposed alternating direction method of multipliers (ADMM), which assures that the model has a probabilistic interpretation, i.e., that all elements of all factor matrices are nonnegative. We perform experiments with several well-known Bayesian networks.nn

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-00902S" target="_blank" >GA17-00902S: Pokročilé metody slepé separace podprostorů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of Machine Learning Research

  • ISBN

  • ISSN

    1938-7228

  • e-ISSN

  • Počet stran výsledku

    12

  • Strana od-do

    463-472

  • Název nakladatele

    UTIA

  • Místo vydání

    Praha

  • Místo konání akce

    Praha

  • Datum konání akce

    11. 9. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku