Representations of Bayesian Networks by Low-Rank Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00493355" target="_blank" >RIV/67985556:_____/18:00493355 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Representations of Bayesian Networks by Low-Rank Models
Popis výsledku v původním jazyce
Conditional probability tables (CPTs) of discrete valued random variables may achieve high dimensions and Bayesian networks defined as the product of these CPTs may become intractable by conventional methods of BN inference because of their dimensionality. In many cases, however, these probability tables constitute tensors of relatively low rank. Such tensors can be written in the so-called Kruskal form as a sum of rank-one components. Such representation would be equivalent to adding one artificial parent to all random variables and deleting all edges between the variables. The most difficult task is to find such a representation given a set of marginals or CPTs of the random variables under consideration. In the former case, it is a problem of joint canonical polyadic (CP) decomposition of a set of tensors. The latter fitting problem can be solved in a similar manner. We apply a recently proposed alternating direction method of multipliers (ADMM), which assures that the model has a probabilistic interpretation, i.e., that all elements of all factor matrices are nonnegative. We perform experiments with several well-known Bayesian networks.nn
Název v anglickém jazyce
Representations of Bayesian Networks by Low-Rank Models
Popis výsledku anglicky
Conditional probability tables (CPTs) of discrete valued random variables may achieve high dimensions and Bayesian networks defined as the product of these CPTs may become intractable by conventional methods of BN inference because of their dimensionality. In many cases, however, these probability tables constitute tensors of relatively low rank. Such tensors can be written in the so-called Kruskal form as a sum of rank-one components. Such representation would be equivalent to adding one artificial parent to all random variables and deleting all edges between the variables. The most difficult task is to find such a representation given a set of marginals or CPTs of the random variables under consideration. In the former case, it is a problem of joint canonical polyadic (CP) decomposition of a set of tensors. The latter fitting problem can be solved in a similar manner. We apply a recently proposed alternating direction method of multipliers (ADMM), which assures that the model has a probabilistic interpretation, i.e., that all elements of all factor matrices are nonnegative. We perform experiments with several well-known Bayesian networks.nn
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-00902S" target="_blank" >GA17-00902S: Pokročilé metody slepé separace podprostorů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of Machine Learning Research
ISBN
—
ISSN
1938-7228
e-ISSN
—
Počet stran výsledku
12
Strana od-do
463-472
Název nakladatele
UTIA
Místo vydání
Praha
Místo konání akce
Praha
Datum konání akce
11. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—