Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Dynamic Bayesian knowledge transfer between a pair of Kalman filters

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00499667" target="_blank" >RIV/67985556:_____/18:00499667 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1109/MLSP.2018.8517020" target="_blank" >http://dx.doi.org/10.1109/MLSP.2018.8517020</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/MLSP.2018.8517020" target="_blank" >10.1109/MLSP.2018.8517020</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Dynamic Bayesian knowledge transfer between a pair of Kalman filters

  • Popis výsledku v původním jazyce

    Transfer learning is a framework that includes---among other topics---the design of knowledge transfer mechanisms between Bayesian filters. Transfer learning strategies in this context typically rely on a complete stochastic dependence structure being specified between the participating learning procedures (filters). This paper proposes a method that does not require such a restrictive assumption. The solution in this incomplete modelling case is based on the fully probabilistic design of an unknown probability distribution which conditions on knowledge in the form of an externally supplied distribution. We are specifically interested in the situation where the external distribution accumulates knowledge dynamically via Kalman filtering. Simulations illustrate that the proposed algorithm outperforms alternative methods for transferring this dynamic knowledge from the external Kalman filter.

  • Název v anglickém jazyce

    Dynamic Bayesian knowledge transfer between a pair of Kalman filters

  • Popis výsledku anglicky

    Transfer learning is a framework that includes---among other topics---the design of knowledge transfer mechanisms between Bayesian filters. Transfer learning strategies in this context typically rely on a complete stochastic dependence structure being specified between the participating learning procedures (filters). This paper proposes a method that does not require such a restrictive assumption. The solution in this incomplete modelling case is based on the fully probabilistic design of an unknown probability distribution which conditions on knowledge in the form of an externally supplied distribution. We are specifically interested in the situation where the external distribution accumulates knowledge dynamically via Kalman filtering. Simulations illustrate that the proposed algorithm outperforms alternative methods for transferring this dynamic knowledge from the external Kalman filter.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-15970S" target="_blank" >GA18-15970S: Optimální zpracování externí stochastické znalosti vyjádřené pomocí pravděpodobnostních distribucí</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    PROCEEDINGS OF MLSP 2018 : IEEE 28th International Workshop on Machine Learning for Signal Processing

  • ISBN

    978-1-5386-5478-1

  • ISSN

    1551-2541

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

  • Název nakladatele

    IEEE

  • Místo vydání

    Piscataway

  • Místo konání akce

    Aalborg

  • Datum konání akce

    17. 9. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000450651000042