Fractional Charlier Moments for Image Reconstruction and Image Watermarking
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F20%3A00522296" target="_blank" >RIV/67985556:_____/20:00522296 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0165168420300529" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165168420300529</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.sigpro.2020.107509" target="_blank" >10.1016/j.sigpro.2020.107509</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fractional Charlier Moments for Image Reconstruction and Image Watermarking
Popis výsledku v původním jazyce
In this paper, we propose a new set of discrete orthogonal polynomials called fractional Charlier polynomials (FrCPs). This new set will be used as a basic function to define the fractional discrete orthogonal Charlier moments (FrCMs). The proposed FrCPs are derived algebraically using the spectral decomposition of Charlier polynomials (CPs), then the Lagrange interpolation formula is used to derive the spectral projectors. Then, each spectral projector matrix is decomposed by the singular value decomposition (SVD) technique in order to build a basic set of orthonormal eigenvectors which help to develop FrCPs. FrCMs are deduced in matrix form from the proposed FrCPs and are applied for image reconstruction and watermarking. The experimental results show the capacity of the FrCMs proposed for image reconstruction and image watermarking against different attacks such as noise and geometric distortions.
Název v anglickém jazyce
Fractional Charlier Moments for Image Reconstruction and Image Watermarking
Popis výsledku anglicky
In this paper, we propose a new set of discrete orthogonal polynomials called fractional Charlier polynomials (FrCPs). This new set will be used as a basic function to define the fractional discrete orthogonal Charlier moments (FrCMs). The proposed FrCPs are derived algebraically using the spectral decomposition of Charlier polynomials (CPs), then the Lagrange interpolation formula is used to derive the spectral projectors. Then, each spectral projector matrix is decomposed by the singular value decomposition (SVD) technique in order to build a basic set of orthonormal eigenvectors which help to develop FrCPs. FrCMs are deduced in matrix form from the proposed FrCPs and are applied for image reconstruction and watermarking. The experimental results show the capacity of the FrCMs proposed for image reconstruction and image watermarking against different attacks such as noise and geometric distortions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-07247S" target="_blank" >GA18-07247S: Metody a algoritmy pro analýzu obrazů vektorových a tenzorových polí</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Signal Processing
ISSN
0165-1684
e-ISSN
—
Svazek periodika
171
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
107529
Kód UT WoS článku
000521117800031
EID výsledku v databázi Scopus
2-s2.0-85079542036