Coupling linearity and twist: an extension of the Poincaré-Birkhoff theorem for Hamiltonian systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F20%3A00534213" target="_blank" >RIV/67985556:_____/20:00534213 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00030-020-00653-9" target="_blank" >https://link.springer.com/article/10.1007/s00030-020-00653-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00030-020-00653-9" target="_blank" >10.1007/s00030-020-00653-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Coupling linearity and twist: an extension of the Poincaré-Birkhoff theorem for Hamiltonian systems
Popis výsledku v původním jazyce
We provide an extension of the Poincaré–Birkhoff Theorem for systems coupling linear components with twisting components. Applications are given both to weakly coupled Hamiltonian systems where, e.g., a superlinear or sublinear behaviour is assumed in the nonlinear part of the coupling in order to recover the needed twist conditions, and to local perturbations of superintegrable systems, showing the survival of a number of periodic solutions from a lower-dimensional torus.
Název v anglickém jazyce
Coupling linearity and twist: an extension of the Poincaré-Birkhoff theorem for Hamiltonian systems
Popis výsledku anglicky
We provide an extension of the Poincaré–Birkhoff Theorem for systems coupling linear components with twisting components. Applications are given both to weakly coupled Hamiltonian systems where, e.g., a superlinear or sublinear behaviour is assumed in the nonlinear part of the coupling in order to recover the needed twist conditions, and to local perturbations of superintegrable systems, showing the survival of a number of periodic solutions from a lower-dimensional torus.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nodea-Nonlinear Differential Equations and Applications
ISSN
1021-9722
e-ISSN
—
Svazek periodika
27
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
26
Strana od-do
55
Kód UT WoS článku
000579163000001
EID výsledku v databázi Scopus
2-s2.0-85092354516