Contribution of František Matúš to the research on conditional independence
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F20%3A00535808" target="_blank" >RIV/67985556:_____/20:00535808 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.kybernetika.cz/content/2020/5/850" target="_blank" >https://www.kybernetika.cz/content/2020/5/850</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14736/kyb-2020-5-0850" target="_blank" >10.14736/kyb-2020-5-0850</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Contribution of František Matúš to the research on conditional independence
Popis výsledku v původním jazyce
An overview of results of F. Matus on probabilistic conditional independence (CI) is given. First, his axiomatic characterizations of stochastic functional dependence and unconditional independence are recalled. Then his elegant proof of discrete probabilistic representability of a matroid based on its linear representability over a finite field is recalled. It is explained that this result was a basis of his methodology for constructing a probabilistic representation of a given abstract CI structure. His embedding of matroids into (augmented) abstract CI structures is recalled. The contribution of his to the theory of semigraphoids is mentioned, too. Finally, his results on the characterization of probabilistic CI structures induced by 4 discrete random variables and by 4 regular Gaussian random variables are recalled. Partial probabilistic representability by binary random variables is also mentioned.
Název v anglickém jazyce
Contribution of František Matúš to the research on conditional independence
Popis výsledku anglicky
An overview of results of F. Matus on probabilistic conditional independence (CI) is given. First, his axiomatic characterizations of stochastic functional dependence and unconditional independence are recalled. Then his elegant proof of discrete probabilistic representability of a matroid based on its linear representability over a finite field is recalled. It is explained that this result was a basis of his methodology for constructing a probabilistic representation of a given abstract CI structure. His embedding of matroids into (augmented) abstract CI structures is recalled. The contribution of his to the theory of semigraphoids is mentioned, too. Finally, his results on the characterization of probabilistic CI structures induced by 4 discrete random variables and by 4 regular Gaussian random variables are recalled. Partial probabilistic representability by binary random variables is also mentioned.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-04579S" target="_blank" >GA19-04579S: Struktury podmíněné nezávislosti: metody polyedrální geometrie</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Kybernetika
ISSN
0023-5954
e-ISSN
—
Svazek periodika
56
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
25
Strana od-do
850-874
Kód UT WoS článku
000596316600002
EID výsledku v databázi Scopus
2-s2.0-85100175531