Classification by ordinal sums of conjunctive and disjunctive functions for explainable AI and interpretable machine learning solutions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00545167" target="_blank" >RIV/67985556:_____/21:00545167 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0950705121001799" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0950705121001799</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.knosys.2021.106916" target="_blank" >10.1016/j.knosys.2021.106916</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Classification by ordinal sums of conjunctive and disjunctive functions for explainable AI and interpretable machine learning solutions
Popis výsledku v původním jazyce
We propose a novel classification according to aggregation functions of mixed behaviour by variability in ordinal sums of conjunctive and disjunctive functions. Consequently, domain experts are empowered to assign only the most important observations regarding the considered attributes. This has the advantage that the variability of the functions provides opportunities for machine learning to learn the best possible option from the data. Moreover, such a solution is comprehensible, reproducible and explainable-per-design to domain experts. In this paper, we discuss the proposed approach with examples and outline the research steps in interactive machine learning with a human-in-the-loop over aggregation functions. Although human experts are not always able to explain anything either, they are sometimes able to bring in experience, contextual understanding and implicit knowledge, which is desirable in certain machine learning tasks and can contribute to the robustness of algorithms. The obtained theoretical results in ordinal sums are discussed and illustrated on examples.
Název v anglickém jazyce
Classification by ordinal sums of conjunctive and disjunctive functions for explainable AI and interpretable machine learning solutions
Popis výsledku anglicky
We propose a novel classification according to aggregation functions of mixed behaviour by variability in ordinal sums of conjunctive and disjunctive functions. Consequently, domain experts are empowered to assign only the most important observations regarding the considered attributes. This has the advantage that the variability of the functions provides opportunities for machine learning to learn the best possible option from the data. Moreover, such a solution is comprehensible, reproducible and explainable-per-design to domain experts. In this paper, we discuss the proposed approach with examples and outline the research steps in interactive machine learning with a human-in-the-loop over aggregation functions. Although human experts are not always able to explain anything either, they are sometimes able to bring in experience, contextual understanding and implicit knowledge, which is desirable in certain machine learning tasks and can contribute to the robustness of algorithms. The obtained theoretical results in ordinal sums are discussed and illustrated on examples.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Knowledge-Based System
ISSN
0950-7051
e-ISSN
1872-7409
Svazek periodika
220
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
106916
Kód UT WoS článku
000637680300011
EID výsledku v databázi Scopus
2-s2.0-85102149142