FMODetect: Robust Detection of Fast Moving Objects
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00546470" target="_blank" >RIV/67985556:_____/21:00546470 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/21:00354083
Výsledek na webu
<a href="http://dx.doi.org/10.1109/ICCV48922.2021.00352" target="_blank" >http://dx.doi.org/10.1109/ICCV48922.2021.00352</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICCV48922.2021.00352" target="_blank" >10.1109/ICCV48922.2021.00352</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
FMODetect: Robust Detection of Fast Moving Objects
Popis výsledku v původním jazyce
We propose the first learning-based approach for fast moving objects detection. Such objects are highly blurred and move over large distances within one video frame. Fastnmoving objects are associated with a deblurring and matting problem, also called deblatting. We show that the separation of deblatting into consecutive matting and deblurring allows achieving real-time performance, i.e. an order of magnitude speed-up, and thus enabling new classes of application. The proposed method detects fast moving objects as a truncated distance function to the trajectory by learning from synthetic data. For the sharp appearance estimation and accurate trajectory estimation, we propose a matting and fitting network that estimates the blurred appearance without background, followed by an energy minimization based deblurring. The state-of-the-art methods are outperformed in terms of recall, precision, trajectory estimation, and sharp appearance reconstruction. Compared to other methods, such as deblatting, the inference is of several orders of magnitude faster and allows applications such as real-time fast moving object detection and retrieval in large video collections.n
Název v anglickém jazyce
FMODetect: Robust Detection of Fast Moving Objects
Popis výsledku anglicky
We propose the first learning-based approach for fast moving objects detection. Such objects are highly blurred and move over large distances within one video frame. Fastnmoving objects are associated with a deblurring and matting problem, also called deblatting. We show that the separation of deblatting into consecutive matting and deblurring allows achieving real-time performance, i.e. an order of magnitude speed-up, and thus enabling new classes of application. The proposed method detects fast moving objects as a truncated distance function to the trajectory by learning from synthetic data. For the sharp appearance estimation and accurate trajectory estimation, we propose a matting and fitting network that estimates the blurred appearance without background, followed by an energy minimization based deblurring. The state-of-the-art methods are outperformed in terms of recall, precision, trajectory estimation, and sharp appearance reconstruction. Compared to other methods, such as deblatting, the inference is of several orders of magnitude faster and allows applications such as real-time fast moving object detection and retrieval in large video collections.n
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20206 - Computer hardware and architecture
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)
ISBN
978-1-6654-2812-5
ISSN
2380-7504
e-ISSN
2380-7504
Počet stran výsledku
9
Strana od-do
3541-3549
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Piscataway (on-line)
Datum konání akce
11. 10. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—