Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Application Of Implicitly Weighted Regression Quantiles: Analysis Of The 2018 Czech Presidential Election

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00555814" target="_blank" >RIV/67985556:_____/21:00555814 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67985807:_____/21:00553132

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Application Of Implicitly Weighted Regression Quantiles: Analysis Of The 2018 Czech Presidential Election

  • Popis výsledku v původním jazyce

    Regression quantiles can be characterized as popular tools for a complex modeling of a continuous response variable conditioning on one or more given independent variables. Because they are however vulnerable to leverage points in the regression model, an alternative approach denoted as implicitly weighted regression quantiles have been proposed. The aim of current work is to apply them to the results of the second round of the 2018 presidential election in the Czech Republic. The election results are modeled as a response of 4 demographic or economic predictors over the 77 Czech counties. The analysis represents the first application of the implicitly weighted regression quantiles to data with more than one regressor. The results reveal the implicitly weighted regression quantiles to be indeed more robust with respect to leverage points compared to standard regression quantiles. If however the model does not contain leverage points, both versions of the regression quantiles yield very similar results. Thus, the election dataset serves here as an illustration of the usefulness of the implicitly weighted regression quantiles.

  • Název v anglickém jazyce

    Application Of Implicitly Weighted Regression Quantiles: Analysis Of The 2018 Czech Presidential Election

  • Popis výsledku anglicky

    Regression quantiles can be characterized as popular tools for a complex modeling of a continuous response variable conditioning on one or more given independent variables. Because they are however vulnerable to leverage points in the regression model, an alternative approach denoted as implicitly weighted regression quantiles have been proposed. The aim of current work is to apply them to the results of the second round of the 2018 presidential election in the Czech Republic. The election results are modeled as a response of 4 demographic or economic predictors over the 77 Czech counties. The analysis represents the first application of the implicitly weighted regression quantiles to data with more than one regressor. The results reveal the implicitly weighted regression quantiles to be indeed more robust with respect to leverage points compared to standard regression quantiles. If however the model does not contain leverage points, both versions of the regression quantiles yield very similar results. Thus, the election dataset serves here as an illustration of the usefulness of the implicitly weighted regression quantiles.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-05325S" target="_blank" >GA21-05325S: Moderní neparametrické metody v ekonometrii</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    RELIK 2021. Conference Proceedings

  • ISBN

    978-80-245-2429-0

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    332-341

  • Název nakladatele

    Prague University of Economics and Business

  • Místo vydání

    Prague

  • Místo konání akce

    Praha

  • Datum konání akce

    4. 11. 2021

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku