Application Of Implicitly Weighted Regression Quantiles: Analysis Of The 2018 Czech Presidential Election
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00555814" target="_blank" >RIV/67985556:_____/21:00555814 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985807:_____/21:00553132
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application Of Implicitly Weighted Regression Quantiles: Analysis Of The 2018 Czech Presidential Election
Popis výsledku v původním jazyce
Regression quantiles can be characterized as popular tools for a complex modeling of a continuous response variable conditioning on one or more given independent variables. Because they are however vulnerable to leverage points in the regression model, an alternative approach denoted as implicitly weighted regression quantiles have been proposed. The aim of current work is to apply them to the results of the second round of the 2018 presidential election in the Czech Republic. The election results are modeled as a response of 4 demographic or economic predictors over the 77 Czech counties. The analysis represents the first application of the implicitly weighted regression quantiles to data with more than one regressor. The results reveal the implicitly weighted regression quantiles to be indeed more robust with respect to leverage points compared to standard regression quantiles. If however the model does not contain leverage points, both versions of the regression quantiles yield very similar results. Thus, the election dataset serves here as an illustration of the usefulness of the implicitly weighted regression quantiles.
Název v anglickém jazyce
Application Of Implicitly Weighted Regression Quantiles: Analysis Of The 2018 Czech Presidential Election
Popis výsledku anglicky
Regression quantiles can be characterized as popular tools for a complex modeling of a continuous response variable conditioning on one or more given independent variables. Because they are however vulnerable to leverage points in the regression model, an alternative approach denoted as implicitly weighted regression quantiles have been proposed. The aim of current work is to apply them to the results of the second round of the 2018 presidential election in the Czech Republic. The election results are modeled as a response of 4 demographic or economic predictors over the 77 Czech counties. The analysis represents the first application of the implicitly weighted regression quantiles to data with more than one regressor. The results reveal the implicitly weighted regression quantiles to be indeed more robust with respect to leverage points compared to standard regression quantiles. If however the model does not contain leverage points, both versions of the regression quantiles yield very similar results. Thus, the election dataset serves here as an illustration of the usefulness of the implicitly weighted regression quantiles.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-05325S" target="_blank" >GA21-05325S: Moderní neparametrické metody v ekonometrii</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
RELIK 2021. Conference Proceedings
ISBN
978-80-245-2429-0
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
332-341
Název nakladatele
Prague University of Economics and Business
Místo vydání
Prague
Místo konání akce
Praha
Datum konání akce
4. 11. 2021
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—