District metered area design through multicriteria and multiobjective optimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00545777" target="_blank" >RIV/67985556:_____/22:00545777 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1002/mma.7090" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/mma.7090</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mma.7090" target="_blank" >10.1002/mma.7090</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
District metered area design through multicriteria and multiobjective optimization
Popis výsledku v původním jazyce
The design of district metered areas (DMA) in potable water supply systems is of paramount importance for water utilities to properly manage their systems. Concomitant to their main objective, namely, to deliver quality water to consumers, the benefits include leakage reduction and prompt reaction in cases of natural or malicious contamination events. Given the structure of a water distribution network (WDN), graph theory is the basis for DMA design, and clustering algorithms can be applied to perform the partitioning. However, such sectorization entails a number of network modifications (installing cut-off valves and metering and control devices) involving costs and operation changes, which have to be carefully studied and optimized. Given the complexity of WDNs, optimization is usually performed using metaheuristic algorithms. In turn, optimization may be single or multiple-objective. In this last case, a large number of solutions, frequently integrating the Pareto front, may be produced. The decision maker has eventually to choose one among them, what may be tough task. Multicriteria decision methods may be applied to support this last step of the decision-making process. In this paper, DMA design is addressed by (i) proposing a modified k-means algorithm for partitioning, (ii) using a multiobjective particle swarm optimization to suitably place partitioning devices, (iii) using fuzzy analytic hierarchy process (FAHP) to weight the four objective functions considered, and (iv) using technique for order of preference by similarity to ideal solution (TOPSIS) to rank the Pareto solutions to support the decision. This joint approach is applied in a case of a well-known WDN of the literature, and the results are discussed.
Název v anglickém jazyce
District metered area design through multicriteria and multiobjective optimization
Popis výsledku anglicky
The design of district metered areas (DMA) in potable water supply systems is of paramount importance for water utilities to properly manage their systems. Concomitant to their main objective, namely, to deliver quality water to consumers, the benefits include leakage reduction and prompt reaction in cases of natural or malicious contamination events. Given the structure of a water distribution network (WDN), graph theory is the basis for DMA design, and clustering algorithms can be applied to perform the partitioning. However, such sectorization entails a number of network modifications (installing cut-off valves and metering and control devices) involving costs and operation changes, which have to be carefully studied and optimized. Given the complexity of WDNs, optimization is usually performed using metaheuristic algorithms. In turn, optimization may be single or multiple-objective. In this last case, a large number of solutions, frequently integrating the Pareto front, may be produced. The decision maker has eventually to choose one among them, what may be tough task. Multicriteria decision methods may be applied to support this last step of the decision-making process. In this paper, DMA design is addressed by (i) proposing a modified k-means algorithm for partitioning, (ii) using a multiobjective particle swarm optimization to suitably place partitioning devices, (iii) using fuzzy analytic hierarchy process (FAHP) to weight the four objective functions considered, and (iv) using technique for order of preference by similarity to ideal solution (TOPSIS) to rank the Pareto solutions to support the decision. This joint approach is applied in a case of a well-known WDN of the literature, and the results are discussed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20306 - Audio engineering, reliability analysis
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Methods in the Applied Sciences
ISSN
0170-4214
e-ISSN
1099-1476
Svazek periodika
45
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
18
Strana od-do
3254-3271
Kód UT WoS článku
000606486400001
EID výsledku v databázi Scopus
2-s2.0-85099089762