Hand detection application based on QRD RLS Lattice algorithm and its implementation on Xilinx Zynq Ultrascale+
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00558772" target="_blank" >RIV/67985556:_____/22:00558772 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21260/22:00358639
Výsledek na webu
<a href="http://nnw.cz/doi/2022/NNW.2022.32.005.pdf" target="_blank" >http://nnw.cz/doi/2022/NNW.2022.32.005.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/NNW.2022.32.005" target="_blank" >10.14311/NNW.2022.32.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hand detection application based on QRD RLS Lattice algorithm and its implementation on Xilinx Zynq Ultrascale+
Popis výsledku v původním jazyce
The present paper describes hand detection application implemented on Xilinx Zynq Ultrascale+ device, comprising multi-core processor ARM Cortex A53 and FPGA programmable logic. It uses ultrasound data and is based on adaptive QRD RLS lattice algorithm extended with hypothesis testing. The algorithm chooses between two use-cases: (1) “there is a hand in front of the device” vs (2) “there is no hand in front of the device”. For these purposes a new structure of the identification models was designed. The model presenting use-case (1) is a regression model, which has the order sufficient to cover all incoming data. The model responsible for use-case (2) is a regression model, which has a smaller order than the model (1) and a certain time delay, covering the maximal distance where the hand can possibly appear. The offered concept was successfully verified using real ultrasound data in MATLAB optimized for parallel processing and implemented in parallel on four cores of ARM Cortex A53 processor. It was proved that computational time of the algorithm is sufficient for applications requiring real-time processing.n
Název v anglickém jazyce
Hand detection application based on QRD RLS Lattice algorithm and its implementation on Xilinx Zynq Ultrascale+
Popis výsledku anglicky
The present paper describes hand detection application implemented on Xilinx Zynq Ultrascale+ device, comprising multi-core processor ARM Cortex A53 and FPGA programmable logic. It uses ultrasound data and is based on adaptive QRD RLS lattice algorithm extended with hypothesis testing. The algorithm chooses between two use-cases: (1) “there is a hand in front of the device” vs (2) “there is no hand in front of the device”. For these purposes a new structure of the identification models was designed. The model presenting use-case (1) is a regression model, which has the order sufficient to cover all incoming data. The model responsible for use-case (2) is a regression model, which has a smaller order than the model (1) and a certain time delay, covering the maximal distance where the hand can possibly appear. The offered concept was successfully verified using real ultrasound data in MATLAB optimized for parallel processing and implemented in parallel on four cores of ARM Cortex A53 processor. It was proved that computational time of the algorithm is sufficient for applications requiring real-time processing.n
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/8A21009" target="_blank" >8A21009: Embedded storage elements on next MCU generation ready for AI on the edge</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Network World
ISSN
1210-0552
e-ISSN
—
Svazek periodika
32
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
20
Strana od-do
73-92
Kód UT WoS článku
000821082700001
EID výsledku v databázi Scopus
2-s2.0-85134783820