These degrees go to eleven: fuzzy logics and gradable predicates
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00563602" target="_blank" >RIV/67985556:_____/22:00563602 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985807:_____/22:00563602
Výsledek na webu
<a href="https://dx.doi.org/10.1007/s11229-022-03909-2" target="_blank" >https://dx.doi.org/10.1007/s11229-022-03909-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11229-022-03909-2" target="_blank" >10.1007/s11229-022-03909-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
These degrees go to eleven: fuzzy logics and gradable predicates
Popis výsledku v původním jazyce
In the literature on vagueness one finds two very different kinds of degree theory. The dominant kind of account of gradable adjectives in formal semantics and linguistics is built on an underlying framework involving bivalence and classical logic: its degrees are not degrees of truth. On the other hand, fuzzy logic based theories of vagueness—largely absent from the formal semantics literature but playing a significant role in both the philosophical literature on vagueness and in the contemporary logic literature—are logically nonclassical and give a central role to the idea of degrees of truth. Each kind of degree theory has a strength: the classical kind allows for rich and subtle analyses of the comparative form of gradable adjectives and of various types of gradable precise adjectives, while the fuzzy kind yields a compelling solution to the sorites paradox. This paper argues that the fuzzy kind of theory can match the benefits of the classical kind and hence that the burden is on the latter to match the advantages of the former. In particular, we develop a new version of the fuzzy logic approach that—unlike existing fuzzy theories—yields a compelling analysis of the comparative as well as an adequate account of gradable precise predicates, while still retaining the advantage of genuinely solving the sorites paradox.
Název v anglickém jazyce
These degrees go to eleven: fuzzy logics and gradable predicates
Popis výsledku anglicky
In the literature on vagueness one finds two very different kinds of degree theory. The dominant kind of account of gradable adjectives in formal semantics and linguistics is built on an underlying framework involving bivalence and classical logic: its degrees are not degrees of truth. On the other hand, fuzzy logic based theories of vagueness—largely absent from the formal semantics literature but playing a significant role in both the philosophical literature on vagueness and in the contemporary logic literature—are logically nonclassical and give a central role to the idea of degrees of truth. Each kind of degree theory has a strength: the classical kind allows for rich and subtle analyses of the comparative form of gradable adjectives and of various types of gradable precise adjectives, while the fuzzy kind yields a compelling solution to the sorites paradox. This paper argues that the fuzzy kind of theory can match the benefits of the classical kind and hence that the burden is on the latter to match the advantages of the former. In particular, we develop a new version of the fuzzy logic approach that—unlike existing fuzzy theories—yields a compelling analysis of the comparative as well as an adequate account of gradable precise predicates, while still retaining the advantage of genuinely solving the sorites paradox.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-00113S" target="_blank" >GA18-00113S: Usuzování se stupňovanými vlastnostmi</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Synthese
ISSN
0039-7857
e-ISSN
1573-0964
Svazek periodika
200
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
38
Strana od-do
445
Kód UT WoS článku
000876310400002
EID výsledku v databázi Scopus
2-s2.0-85140909114