Prediction of overdispersed count data using real-time cluster-based discretization of explanatory variables
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00569490" target="_blank" >RIV/67985556:_____/23:00569490 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21260/23:00364216
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-031-26474-0_9" target="_blank" >http://dx.doi.org/10.1007/978-3-031-26474-0_9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-26474-0_9" target="_blank" >10.1007/978-3-031-26474-0_9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Prediction of overdispersed count data using real-time cluster-based discretization of explanatory variables
Popis výsledku v původním jazyce
The chapter focuses on the description of the relationship of the count variable and explanatory Gaussian variables. The cluster-based model is proposed, which is constructed on conditionally independent Gaussian clusters captured in real time using recursive algorithms of the Bayesian mixture estimation theory. The resulting model is expected to be used for predicting count data using real time Gaussian observations. The Poisson distribution of the count data is used as a basic model. However, in reality, count data often do not satisfy the Poisson assumption of equal mean and variance. For this case, five cluster-based Poisson-related models of overdispersed data have been studied. The experimental part of the chapter demonstrates a comparison of the prediction accuracy of the considered models with two theoretical counterparts for the case of weak and strong overdispersion with the help of simulations. The paper reports that the most accurate prediction in average has been provided by the cluster-based Generalized Poisson models.
Název v anglickém jazyce
Prediction of overdispersed count data using real-time cluster-based discretization of explanatory variables
Popis výsledku anglicky
The chapter focuses on the description of the relationship of the count variable and explanatory Gaussian variables. The cluster-based model is proposed, which is constructed on conditionally independent Gaussian clusters captured in real time using recursive algorithms of the Bayesian mixture estimation theory. The resulting model is expected to be used for predicting count data using real time Gaussian observations. The Poisson distribution of the count data is used as a basic model. However, in reality, count data often do not satisfy the Poisson assumption of equal mean and variance. For this case, five cluster-based Poisson-related models of overdispersed data have been studied. The experimental part of the chapter demonstrates a comparison of the prediction accuracy of the considered models with two theoretical counterparts for the case of weak and strong overdispersion with the help of simulations. The paper reports that the most accurate prediction in average has been provided by the cluster-based Generalized Poisson models.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/8A19009" target="_blank" >8A19009: Arrowhead Tools for Engineering of Digitalisation Solutions</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Informatics in Control, Automation and Robotics. ICINCO 2021 : Revised Selected Papers
ISBN
978-3-031-26474-0
Počet stran výsledku
22
Strana od-do
163-184
Počet stran knihy
209
Název nakladatele
Springer
Místo vydání
Cham
Kód UT WoS kapitoly
—