Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00572279" target="_blank" >RIV/67985556:_____/23:00572279 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67985807:_____/23:00572279 RIV/00216224:14310/23:00130636 RIV/00216208:11120/23:43925400

  • Výsledek na webu

    <a href="https://dx.doi.org/10.7554/eLife.81916" target="_blank" >https://dx.doi.org/10.7554/eLife.81916</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.7554/eLife.81916" target="_blank" >10.7554/eLife.81916</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations

  • Popis výsledku v původním jazyce

    BACKGROUND: Short-term forecasts of infectious disease contribute to situational awareness and capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise forecasts’ predictive performance by combining independent models into an ensemble. Here we report the performance of ensemble predictions of COVID-19 cases and deaths across Europe from March 2021 to March 2022. METHODS: We created the European COVID-19 Forecast Hub, an online open-access platform where modellers upload weekly forecasts for 32 countries with results publicly visualised and evaluated. We created a weekly ensemble forecast from the equally-weighted average across individual models' predictive quantiles. We measured forecast accuracy using a baseline and relative Weighted Interval Score (rWIS). We retrospectively explored ensemble methods, including weighting by past performance. RESULTS: We collected weekly forecasts from 48 models, of which we evaluated 29 models alongside the ensemble model. The ensemble had a consistently strong performance across countries over time, performing better on rWIS than 91% of forecasts for deaths (N=763 predictions from 20 models), and 83% forecasts for cases (N=886 predictions from 23 models). Performance remained stable over a 4-week horizon for death forecasts but declined with longer horizons for cases. Among ensemble methods, the most influential choice came from using a median average instead of the mean, regardless of weighting component models. CONCLUSIONS: Our results support combining independent models into an ensemble forecast to improve epidemiological predictions, and suggest that median averages yield better performance than methods based on means. We highlight that forecast consumers should place more weight on incident death forecasts than case forecasts at horizons greater than two weeks. FUNDING: European Commission, Ministerio de Ciencia, Innovación y Universidades, FEDER66666 - Agència de Qualitat i Avaluació Sanitàries de Catalunya - Netzwerk Universitätsmedizin - Health Protection Research Unit - Wellcome Trust - European Centre for Disease Prevention and Control - Ministry of Science and Higher Education of Poland - Federal Ministry of Education and Research - Los Alamos National Laboratory - German Free State of Saxony - NCBiR - FISR 2020 Covid-19 I Fase - Spanish Ministry of Health / REACT-UE (FEDER) - National Institutes of General Medical Sciences - Ministerio de Sanidad/ISCIII - PERISCOPE European H2020 - PERISCOPE European H2021 - InPresa - National Institutes of Health, NSF, US Centers for Disease Control and Prevention, Google, University of Virginia, Defense Threat Reduction Agency.

  • Název v anglickém jazyce

    Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations

  • Popis výsledku anglicky

    BACKGROUND: Short-term forecasts of infectious disease contribute to situational awareness and capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise forecasts’ predictive performance by combining independent models into an ensemble. Here we report the performance of ensemble predictions of COVID-19 cases and deaths across Europe from March 2021 to March 2022. METHODS: We created the European COVID-19 Forecast Hub, an online open-access platform where modellers upload weekly forecasts for 32 countries with results publicly visualised and evaluated. We created a weekly ensemble forecast from the equally-weighted average across individual models' predictive quantiles. We measured forecast accuracy using a baseline and relative Weighted Interval Score (rWIS). We retrospectively explored ensemble methods, including weighting by past performance. RESULTS: We collected weekly forecasts from 48 models, of which we evaluated 29 models alongside the ensemble model. The ensemble had a consistently strong performance across countries over time, performing better on rWIS than 91% of forecasts for deaths (N=763 predictions from 20 models), and 83% forecasts for cases (N=886 predictions from 23 models). Performance remained stable over a 4-week horizon for death forecasts but declined with longer horizons for cases. Among ensemble methods, the most influential choice came from using a median average instead of the mean, regardless of weighting component models. CONCLUSIONS: Our results support combining independent models into an ensemble forecast to improve epidemiological predictions, and suggest that median averages yield better performance than methods based on means. We highlight that forecast consumers should place more weight on incident death forecasts than case forecasts at horizons greater than two weeks. FUNDING: European Commission, Ministerio de Ciencia, Innovación y Universidades, FEDER66666 - Agència de Qualitat i Avaluació Sanitàries de Catalunya - Netzwerk Universitätsmedizin - Health Protection Research Unit - Wellcome Trust - European Centre for Disease Prevention and Control - Ministry of Science and Higher Education of Poland - Federal Ministry of Education and Research - Los Alamos National Laboratory - German Free State of Saxony - NCBiR - FISR 2020 Covid-19 I Fase - Spanish Ministry of Health / REACT-UE (FEDER) - National Institutes of General Medical Sciences - Ministerio de Sanidad/ISCIII - PERISCOPE European H2020 - PERISCOPE European H2021 - InPresa - National Institutes of Health, NSF, US Centers for Disease Control and Prevention, Google, University of Virginia, Defense Threat Reduction Agency.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    eLife

  • ISSN

    2050-084X

  • e-ISSN

    2050-084X

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    April 2023

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    19

  • Strana od-do

    e81916

  • Kód UT WoS článku

    001009734700001

  • EID výsledku v databázi Scopus

    2-s2.0-85158061738