On conditional belief functions in directed graphical models in the Dempster-Shafer theory
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00573509" target="_blank" >RIV/67985556:_____/23:00573509 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0888613X2300107X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0888613X2300107X?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijar.2023.108976" target="_blank" >10.1016/j.ijar.2023.108976</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On conditional belief functions in directed graphical models in the Dempster-Shafer theory
Popis výsledku v původním jazyce
The primary goal is to define conditional belief functions in the Dempster-Shafer theory. We do so similarly to probability theory's notion of conditional probability tables. Conditional belief functions are necessary for constructing directed graphical belief function models in the same sense as conditional probability tables are necessary for constructing Bayesian networks. We provide examples of conditional belief functions, including those obtained by Smets' conditional embedding. Besides defining conditional belief functions, we state and prove a few basic properties of conditionals. In the belief-function literature, conditionals are defined starting from a joint belief function. Conditionals are then defined using the removal operator, an inverse of Dempster's combination operator. When such conditionals are well-defined belief functions, we show that our definition is equivalent to these definitions.
Název v anglickém jazyce
On conditional belief functions in directed graphical models in the Dempster-Shafer theory
Popis výsledku anglicky
The primary goal is to define conditional belief functions in the Dempster-Shafer theory. We do so similarly to probability theory's notion of conditional probability tables. Conditional belief functions are necessary for constructing directed graphical belief function models in the same sense as conditional probability tables are necessary for constructing Bayesian networks. We provide examples of conditional belief functions, including those obtained by Smets' conditional embedding. Besides defining conditional belief functions, we state and prove a few basic properties of conditionals. In the belief-function literature, conditionals are defined starting from a joint belief function. Conditionals are then defined using the removal operator, an inverse of Dempster's combination operator. When such conditionals are well-defined belief functions, we show that our definition is equivalent to these definitions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-07494S" target="_blank" >GA21-07494S: Účinnost politiky snižování emisí uhlíku</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Approximate Reasoning
ISSN
0888-613X
e-ISSN
1873-4731
Svazek periodika
160
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
108976
Kód UT WoS článku
001048425800001
EID výsledku v databázi Scopus
2-s2.0-85165538154