Accelerated and Improved Stabilization for High Order Moments of Racah Polynomials
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00576213" target="_blank" >RIV/67985556:_____/23:00576213 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10271275" target="_blank" >https://ieeexplore.ieee.org/document/10271275</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2023.3321969" target="_blank" >10.1109/ACCESS.2023.3321969</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Accelerated and Improved Stabilization for High Order Moments of Racah Polynomials
Popis výsledku v původním jazyce
Discrete Racah polynomials (DRPs) are highly efficient orthogonal polynomials widely used in various scientific fields for signal representation. They find applications in disciplines like image processing and computer vision. Racah polynomials were originally introduced by Wilson and later modified by Zhu to be orthogonal on a discrete set of samples. However, when the degree of the polynomial is high, it encounters numerical instability issues. In this paper, we propose a novel algorithm called Improved Stabilization (ImSt) for computing DRP coefficients. The algorithm partitions the DRP plane into asymmetric parts based on the polynomial size and DRP parameters. We have optimized the use of stabilizing conditions in these partitions. To compute the initial values, we employ the logarithmic gamma function along with a new formula. This combination enables us to compute the initial values efficiently for a wide range of DRP parameter values and large polynomial sizes. Additionally, we have derived a symmetry relation for the case when the Racah polynomial parameters are zero ($a=0$, $alpha=0$, $beta=0$). This symmetry makes the Racah polynomials symmetric, and we present a different algorithm for this specific scenario. We have demonstrated that the ImSt algorithm works for a broader range of parameters and higher degrees compared to existing algorithms. A comprehensive comparison between ImSt and the existing algorithms has been conducted, considering the maximum polynomial degree, computation time, restriction error analysis, and reconstruction error. The results of the comparison indicate that ImSt outperforms the existing algorithms for various values of Racah polynomial parameters.
Název v anglickém jazyce
Accelerated and Improved Stabilization for High Order Moments of Racah Polynomials
Popis výsledku anglicky
Discrete Racah polynomials (DRPs) are highly efficient orthogonal polynomials widely used in various scientific fields for signal representation. They find applications in disciplines like image processing and computer vision. Racah polynomials were originally introduced by Wilson and later modified by Zhu to be orthogonal on a discrete set of samples. However, when the degree of the polynomial is high, it encounters numerical instability issues. In this paper, we propose a novel algorithm called Improved Stabilization (ImSt) for computing DRP coefficients. The algorithm partitions the DRP plane into asymmetric parts based on the polynomial size and DRP parameters. We have optimized the use of stabilizing conditions in these partitions. To compute the initial values, we employ the logarithmic gamma function along with a new formula. This combination enables us to compute the initial values efficiently for a wide range of DRP parameter values and large polynomial sizes. Additionally, we have derived a symmetry relation for the case when the Racah polynomial parameters are zero ($a=0$, $alpha=0$, $beta=0$). This symmetry makes the Racah polynomials symmetric, and we present a different algorithm for this specific scenario. We have demonstrated that the ImSt algorithm works for a broader range of parameters and higher degrees compared to existing algorithms. A comprehensive comparison between ImSt and the existing algorithms has been conducted, considering the maximum polynomial degree, computation time, restriction error analysis, and reconstruction error. The results of the comparison indicate that ImSt outperforms the existing algorithms for various values of Racah polynomial parameters.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-03921S" target="_blank" >GA21-03921S: Inverzní problémy ve zpracování obrazu</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
11
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
AU - Austrálie
Počet stran výsledku
20
Strana od-do
110502-110521
Kód UT WoS článku
001094808500001
EID výsledku v databázi Scopus
2-s2.0-85174839455