Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Accelerated and Improved Stabilization for High Order Moments of Racah Polynomials

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00576213" target="_blank" >RIV/67985556:_____/23:00576213 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10271275" target="_blank" >https://ieeexplore.ieee.org/document/10271275</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2023.3321969" target="_blank" >10.1109/ACCESS.2023.3321969</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Accelerated and Improved Stabilization for High Order Moments of Racah Polynomials

  • Popis výsledku v původním jazyce

    Discrete Racah polynomials (DRPs) are highly efficient orthogonal polynomials widely used in various scientific fields for signal representation. They find applications in disciplines like image processing and computer vision. Racah polynomials were originally introduced by Wilson and later modified by Zhu to be orthogonal on a discrete set of samples. However, when the degree of the polynomial is high, it encounters numerical instability issues. In this paper, we propose a novel algorithm called Improved Stabilization (ImSt) for computing DRP coefficients. The algorithm partitions the DRP plane into asymmetric parts based on the polynomial size and DRP parameters. We have optimized the use of stabilizing conditions in these partitions. To compute the initial values, we employ the logarithmic gamma function along with a new formula. This combination enables us to compute the initial values efficiently for a wide range of DRP parameter values and large polynomial sizes. Additionally, we have derived a symmetry relation for the case when the Racah polynomial parameters are zero ($a=0$, $alpha=0$, $beta=0$). This symmetry makes the Racah polynomials symmetric, and we present a different algorithm for this specific scenario. We have demonstrated that the ImSt algorithm works for a broader range of parameters and higher degrees compared to existing algorithms. A comprehensive comparison between ImSt and the existing algorithms has been conducted, considering the maximum polynomial degree, computation time, restriction error analysis, and reconstruction error. The results of the comparison indicate that ImSt outperforms the existing algorithms for various values of Racah polynomial parameters.

  • Název v anglickém jazyce

    Accelerated and Improved Stabilization for High Order Moments of Racah Polynomials

  • Popis výsledku anglicky

    Discrete Racah polynomials (DRPs) are highly efficient orthogonal polynomials widely used in various scientific fields for signal representation. They find applications in disciplines like image processing and computer vision. Racah polynomials were originally introduced by Wilson and later modified by Zhu to be orthogonal on a discrete set of samples. However, when the degree of the polynomial is high, it encounters numerical instability issues. In this paper, we propose a novel algorithm called Improved Stabilization (ImSt) for computing DRP coefficients. The algorithm partitions the DRP plane into asymmetric parts based on the polynomial size and DRP parameters. We have optimized the use of stabilizing conditions in these partitions. To compute the initial values, we employ the logarithmic gamma function along with a new formula. This combination enables us to compute the initial values efficiently for a wide range of DRP parameter values and large polynomial sizes. Additionally, we have derived a symmetry relation for the case when the Racah polynomial parameters are zero ($a=0$, $alpha=0$, $beta=0$). This symmetry makes the Racah polynomials symmetric, and we present a different algorithm for this specific scenario. We have demonstrated that the ImSt algorithm works for a broader range of parameters and higher degrees compared to existing algorithms. A comprehensive comparison between ImSt and the existing algorithms has been conducted, considering the maximum polynomial degree, computation time, restriction error analysis, and reconstruction error. The results of the comparison indicate that ImSt outperforms the existing algorithms for various values of Racah polynomial parameters.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-03921S" target="_blank" >GA21-03921S: Inverzní problémy ve zpracování obrazu</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

    2169-3536

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    AU - Austrálie

  • Počet stran výsledku

    20

  • Strana od-do

    110502-110521

  • Kód UT WoS článku

    001094808500001

  • EID výsledku v databázi Scopus

    2-s2.0-85174839455