Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Structural learning of mixed noisy-OR Bayesian networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00581903" target="_blank" >RIV/67985556:_____/23:00581903 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989592:15210/23:73620687

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0888613X23001214?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0888613X23001214?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ijar.2023.108990" target="_blank" >10.1016/j.ijar.2023.108990</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Structural learning of mixed noisy-OR Bayesian networks

  • Popis výsledku v původním jazyce

    In this paper we discuss learning Bayesian networks whose conditional probability tables are either Noisy-OR models or general conditional probability tables. We refer to these models as Mixed Noisy-OR Bayesian Networks. To learn their structure, we modify the Bayesian Information Criterion used for standard Bayesian networks to reflect the number of parameters of a Noisy-OR model. We prove that the log-likelihood function of a Noisy-OR model has a unique maximum and adapt the EM-learning method for the leaky Noisy-OR model. We propose a structure learning algorithm that learns optimal Mixed Noisy-OR Bayesian Networks. We evaluate the proposed approach on synthetic data, where it performs substantially better than standard Bayesian networks. We perform experiments with Bipartite Noisy-OR Bayesian networks of different complexity to find out when the results of Mixed Noisy-OR Bayesian Networks are significantly better than the results of standard Bayesian networks and when they perform similarly. We also study how different penalties based on the number of model parameters affect the quality of the results. Finally, we apply the suggested approach to a problem from the domain of linguistics. Specifically, we use Mixed Noisy-OR Bayesian Networks to model the spread of loanwords in the South-East Asian Archipelago. We perform numerical experiments in which we compare the prediction ability of standard Bayesian networks with Mixed Noisy-OR Bayesian networks and test different pruning methods to reduce the number of parent sets considered.

  • Název v anglickém jazyce

    Structural learning of mixed noisy-OR Bayesian networks

  • Popis výsledku anglicky

    In this paper we discuss learning Bayesian networks whose conditional probability tables are either Noisy-OR models or general conditional probability tables. We refer to these models as Mixed Noisy-OR Bayesian Networks. To learn their structure, we modify the Bayesian Information Criterion used for standard Bayesian networks to reflect the number of parameters of a Noisy-OR model. We prove that the log-likelihood function of a Noisy-OR model has a unique maximum and adapt the EM-learning method for the leaky Noisy-OR model. We propose a structure learning algorithm that learns optimal Mixed Noisy-OR Bayesian Networks. We evaluate the proposed approach on synthetic data, where it performs substantially better than standard Bayesian networks. We perform experiments with Bipartite Noisy-OR Bayesian networks of different complexity to find out when the results of Mixed Noisy-OR Bayesian Networks are significantly better than the results of standard Bayesian networks and when they perform similarly. We also study how different penalties based on the number of model parameters affect the quality of the results. Finally, we apply the suggested approach to a problem from the domain of linguistics. Specifically, we use Mixed Noisy-OR Bayesian Networks to model the spread of loanwords in the South-East Asian Archipelago. We perform numerical experiments in which we compare the prediction ability of standard Bayesian networks with Mixed Noisy-OR Bayesian networks and test different pruning methods to reduce the number of parent sets considered.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20202 - Communication engineering and systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA20-18407S" target="_blank" >GA20-18407S: Automatizace analýzy slovesných tříd pro ohrožené jazyky - RoboCorp</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Approximate Reasoning

  • ISSN

    0888-613X

  • e-ISSN

    1873-4731

  • Svazek periodika

    161

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    18

  • Strana od-do

    108990

  • Kód UT WoS článku

    001064515700001

  • EID výsledku v databázi Scopus

    2-s2.0-85166914975