Homogenization of high-contrast composites under differential constraints
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F24%3A00576553" target="_blank" >RIV/67985556:_____/24:00576553 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.degruyter.com/document/doi/10.1515/acv-2022-0009/html" target="_blank" >https://www.degruyter.com/document/doi/10.1515/acv-2022-0009/html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/acv-2022-0009" target="_blank" >10.1515/acv-2022-0009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Homogenization of high-contrast composites under differential constraints
Popis výsledku v původním jazyce
We derive, by means of variational techniques, a limiting description for a class of integral functionals under linear differential constraints. The functionals are designed to encode the energy of a high-contrast composite, that is, a heterogeneous material which, at a microscopic level, consists of a periodically perforated matrix whose cavities are occupied by a filling with very different physical properties. Our main result provides a Γ-convergence analysis as the periodicity tends to zero, and shows that the variational limit of the functionals at stake is the sum of two contributions, one resulting from the energy stored in the matrix and the other from the energy stored in the inclusions. As a consequence of the underlying high-contrast structure, the study is faced with a lack of coercivity with respect to the standard topologies in Lp , which we tackle by means of two-scale convergence techniques. In order to handle the differential constraints, instead, we establish new results about the existence of potentials and of constraint-preserving extension operators for linear, k-th order, homogeneous differential operators with constant coefficients and constant rank.
Název v anglickém jazyce
Homogenization of high-contrast composites under differential constraints
Popis výsledku anglicky
We derive, by means of variational techniques, a limiting description for a class of integral functionals under linear differential constraints. The functionals are designed to encode the energy of a high-contrast composite, that is, a heterogeneous material which, at a microscopic level, consists of a periodically perforated matrix whose cavities are occupied by a filling with very different physical properties. Our main result provides a Γ-convergence analysis as the periodicity tends to zero, and shows that the variational limit of the functionals at stake is the sum of two contributions, one resulting from the energy stored in the matrix and the other from the energy stored in the inclusions. As a consequence of the underlying high-contrast structure, the study is faced with a lack of coercivity with respect to the standard topologies in Lp , which we tackle by means of two-scale convergence techniques. In order to handle the differential constraints, instead, we establish new results about the existence of potentials and of constraint-preserving extension operators for linear, k-th order, homogeneous differential operators with constant coefficients and constant rank.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Calculus of Variations
ISSN
1864-8258
e-ISSN
1864-8266
Svazek periodika
17
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
42
Strana od-do
277-318
Kód UT WoS článku
000871631400001
EID výsledku v databázi Scopus
2-s2.0-85141683684