Weaves, webs and flows
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F24%3A00597140" target="_blank" >RIV/67985556:_____/24:00597140 - isvavai.cz</a>
Výsledek na webu
<a href="https://projecteuclid.org/journals/electronic-journal-of-probability/volume-29/issue-none/Weaves-webs-and-flows/10.1214/24-EJP1161.full" target="_blank" >https://projecteuclid.org/journals/electronic-journal-of-probability/volume-29/issue-none/Weaves-webs-and-flows/10.1214/24-EJP1161.full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1214/24-EJP1161" target="_blank" >10.1214/24-EJP1161</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Weaves, webs and flows
Popis výsledku v původním jazyce
We introduce weaves, which are random sets of non-crossing càdlàg paths that cover space-time R × R. The Brownian web is one example of a weave, but a key feature of our work is that we do not assume that the particle motions have any particular distribution. Rather, we present a general theory of the structure, characterization and weak convergence of weaves. We show that the space of weaves has an appealing geometry, involving a partition into equivalence classes under which each equivalence class contains a pair of distinguished objects known as a web and a flow. Webs are natural generalizations of the Brownian web and the flows provide pathwise representations of stochastic flows. Moreover, there is a natural partial order on the space of weaves, characterizing the efficiency with which paths cover space-time, under which webs are precisely minimal weaves and flows are precisely maximal weaves. This structure is key to establishing weak convergence criteria for general weaves, based on weak convergence of finite collections of particle motions.
Název v anglickém jazyce
Weaves, webs and flows
Popis výsledku anglicky
We introduce weaves, which are random sets of non-crossing càdlàg paths that cover space-time R × R. The Brownian web is one example of a weave, but a key feature of our work is that we do not assume that the particle motions have any particular distribution. Rather, we present a general theory of the structure, characterization and weak convergence of weaves. We show that the space of weaves has an appealing geometry, involving a partition into equivalence classes under which each equivalence class contains a pair of distinguished objects known as a web and a flow. Webs are natural generalizations of the Brownian web and the flows provide pathwise representations of stochastic flows. Moreover, there is a natural partial order on the space of weaves, characterizing the efficiency with which paths cover space-time, under which webs are precisely minimal weaves and flows are precisely maximal weaves. This structure is key to establishing weak convergence criteria for general weaves, based on weak convergence of finite collections of particle motions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-12790S" target="_blank" >GA22-12790S: Stochastické systémy v nekonečné dimensi</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electronic Journal of Probability
ISSN
1083-6489
e-ISSN
1083-6489
Svazek periodika
29
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
82
Strana od-do
1-82
Kód UT WoS článku
001267278400001
EID výsledku v databázi Scopus
2-s2.0-85199786976