Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Skládané neuronové sítě s rozpoznávacím algoritmem nejbližšího souseda

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F05%3A00405597" target="_blank" >RIV/67985807:_____/05:00405597 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Assembly Neural Network with Nearest-Neighbor Recognition Algorithm

  • Popis výsledku v původním jazyce

    An assembly neural network based on binary Hebbian rule is suggested for pattern recognition. The network consists of several sub-networks according to the number of classes to be recognized. Each sub-network consists of several neural columns accordingto dimensionality of signal space so that the value of each signal component is encoded by activity of adjacent neurons of the column. A new recognition algorithm is presented which realizes the nearest-neighbor method in the assembly neural network. Computer simulation of the network is performed. The model is tested on a texture segmentation task. The experiments have demonstrated that the network is able to segment reasonably real-world texture images.

  • Název v anglickém jazyce

    Assembly Neural Network with Nearest-Neighbor Recognition Algorithm

  • Popis výsledku anglicky

    An assembly neural network based on binary Hebbian rule is suggested for pattern recognition. The network consists of several sub-networks according to the number of classes to be recognized. Each sub-network consists of several neural columns accordingto dimensionality of signal space so that the value of each signal component is encoded by activity of adjacent neurons of the column. A new recognition algorithm is presented which realizes the nearest-neighbor method in the assembly neural network. Computer simulation of the network is performed. The model is tested on a texture segmentation task. The experiments have demonstrated that the network is able to segment reasonably real-world texture images.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/1M0567" target="_blank" >1M0567: Centrum aplikované kybernetiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2005

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neural Network World

  • ISSN

    1210-0552

  • e-ISSN

  • Svazek periodika

    15

  • Číslo periodika v rámci svazku

    -

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    14

  • Strana od-do

    9-22

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus