Shlukování proměnných klasickými metodami a pomocí neurosíťové Booleovské faktorové analýzy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F08%3A00314040" target="_blank" >RIV/67985807:_____/08:00314040 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/08:86075668
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Clustering Variables by Classical Approaches and Neural Network Boolean Factor Analysis
Popis výsledku v původním jazyce
In this paper, we compare three methods for grouping of binary variables: neural network Boolean factor analysis , hierarchical clustering, and a linear factor analysis on the mushroom dataset . In contrast to the latter two traditional methods, the advantage of neural network Boolean factor analysis is its ability to reveal overlapping classes in the dataset. It is shown that the mushroom dataset provides a good demonstration of this advantage because it contains both disjunctive and overlapping classes.
Název v anglickém jazyce
Clustering Variables by Classical Approaches and Neural Network Boolean Factor Analysis
Popis výsledku anglicky
In this paper, we compare three methods for grouping of binary variables: neural network Boolean factor analysis , hierarchical clustering, and a linear factor analysis on the mushroom dataset . In contrast to the latter two traditional methods, the advantage of neural network Boolean factor analysis is its ability to reveal overlapping classes in the dataset. It is shown that the mushroom dataset provides a good demonstration of this advantage because it contains both disjunctive and overlapping classes.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International Joint Conference on Neural Networks
ISBN
978-1-4244-1820-6
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
—
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Hong Kong
Datum konání akce
1. 6. 2008
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000263827202095