O ortogonální redukci matice na pásovou Hessenbergovu matici
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F09%3A00314348" target="_blank" >RIV/67985807:_____/09:00314348 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Orthogonal Reduction to Hessenberg Form with Small Bandwidth
Popis výsledku v původním jazyce
Numerous algorithms in numerical linear algebra are based on the reduction of a given matrix A to a more convenient form. One of the most useful types of such reduction is the orthogonal reduction to (upper) Hessenberg form. This reduction can be computed by the Arnoldi algorithm. When A is Hermitian, the resulting upper Hessenberg matrix is tridiagonal. In this paper we study necessary and sufficient conditions on A so that the orthogonal Hessenberg reduction yields a Hessenberg matrix with small bandwidth. Our proof utilizes the idea of a "minimal counterexample", which is standard in combinatorial optimization, but rarely used in the context of linear algebra.
Název v anglickém jazyce
On Orthogonal Reduction to Hessenberg Form with Small Bandwidth
Popis výsledku anglicky
Numerous algorithms in numerical linear algebra are based on the reduction of a given matrix A to a more convenient form. One of the most useful types of such reduction is the orthogonal reduction to (upper) Hessenberg form. This reduction can be computed by the Arnoldi algorithm. When A is Hermitian, the resulting upper Hessenberg matrix is tridiagonal. In this paper we study necessary and sufficient conditions on A so that the orthogonal Hessenberg reduction yields a Hessenberg matrix with small bandwidth. Our proof utilizes the idea of a "minimal counterexample", which is standard in combinatorial optimization, but rarely used in the context of linear algebra.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/IAA100300802" target="_blank" >IAA100300802: Teorie metod Krylovových podprostorů a její vztah k jiným oblastem matematiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Numerical Algorithms
ISSN
1017-1398
e-ISSN
—
Svazek periodika
51
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
000265919800001
EID výsledku v databázi Scopus
—