Measures of Ruleset Quality for General Rules Extraction Methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F09%3A00323363" target="_blank" >RIV/67985807:_____/09:00323363 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Measures of Ruleset Quality for General Rules Extraction Methods
Popis výsledku v původním jazyce
The paper deals with quality measures of whole sets of rules extracted from data, as a counterpart to more commonly used measures of individual rules. It sketches the typology of rules extraction methods and of their rulesets, and recalls that quality measures for whole sets of rules have been so far used only in the case of classification rulesets. Then three particular approaches to extending ruleset quality measures from classification to general rulesets are discussed. The paper also recalls the possibility to measure the dependence of classification rulesets on parameters of the classification method by means of ROC curves, and proposes a generalization of ROC curves to general rulesets. Finally, the approach is illustrated on rulesets extracted with four important rules extraction methods from the well-known iris data.
Název v anglickém jazyce
Measures of Ruleset Quality for General Rules Extraction Methods
Popis výsledku anglicky
The paper deals with quality measures of whole sets of rules extracted from data, as a counterpart to more commonly used measures of individual rules. It sketches the typology of rules extraction methods and of their rulesets, and recalls that quality measures for whole sets of rules have been so far used only in the case of classification rulesets. Then three particular approaches to extending ruleset quality measures from classification to general rulesets are discussed. The paper also recalls the possibility to measure the dependence of classification rulesets on parameters of the classification method by means of ROC curves, and proposes a generalization of ROC curves to general rulesets. Finally, the approach is illustrated on rulesets extracted with four important rules extraction methods from the well-known iris data.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F08%2F0802" target="_blank" >GA201/08/0802: Aplikace metod znalostního inženýrství při dobývání znalostí z databází</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Approximate Reasoning
ISSN
0888-613X
e-ISSN
—
Svazek periodika
50
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
000267232200005
EID výsledku v databázi Scopus
—