Iterative Solvers within Sequences of Large Linear Systems in Non-linear Structural Mechanics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F09%3A00328909" target="_blank" >RIV/67985807:_____/09:00328909 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Iterative Solvers within Sequences of Large Linear Systems in Non-linear Structural Mechanics
Popis výsledku v původním jazyce
This article treats the computation of discretized constitutive models of evolutionary-type (like models of viscoelasticity, plasticity, and viscoplasticity) with quasi-static finite elements using diagonally implicit Runge-Kutta methods (DIRK) combinedwith the Multilevel- Newton algorithm (MLNA). The main emphasis is on promoting iterative methods, as opposed to the more traditional direct methods, for solving the non-symmetric systems which occur within the DIRK/MLNA. It is shown that iterative solution of the arising sequences of linear systems can be substantially accelerated by various techniques that aim at sharing part of the computational effort throughout the sequence.
Název v anglickém jazyce
Iterative Solvers within Sequences of Large Linear Systems in Non-linear Structural Mechanics
Popis výsledku anglicky
This article treats the computation of discretized constitutive models of evolutionary-type (like models of viscoelasticity, plasticity, and viscoplasticity) with quasi-static finite elements using diagonally implicit Runge-Kutta methods (DIRK) combinedwith the Multilevel- Newton algorithm (MLNA). The main emphasis is on promoting iterative methods, as opposed to the more traditional direct methods, for solving the non-symmetric systems which occur within the DIRK/MLNA. It is shown that iterative solution of the arising sequences of linear systems can be substantially accelerated by various techniques that aim at sharing part of the computational effort throughout the sequence.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/KJB100300703" target="_blank" >KJB100300703: Řešení rozsáhlých, řídkých a nesymetrických lineárních systémů Krylovovskými metodami.</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik
ISSN
0044-2267
e-ISSN
—
Svazek periodika
89
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
18
Strana od-do
—
Kód UT WoS článku
000270156700001
EID výsledku v databázi Scopus
—