Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Boosted Neural Networks in Evolutionary Computation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F09%3A00333959" target="_blank" >RIV/67985807:_____/09:00333959 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Boosted Neural Networks in Evolutionary Computation

  • Popis výsledku v původním jazyce

    The paper deals with a neural-network-based version of surrogate modelling, a modern approach to the optimization of empirical objective functions. The approach leads to a substantial decrease of time and costs of evaluation of the objective function, aproperty that is particularly attractive in evolutionary optimization. In the paper, an extension of surrogate modelling with regression boosting is proposed, which increases the accuracy of surrogate models, thus also the agreement between results obtained with the model and those obtained with the original objective function. The extension is illustrated on a case study in materials science. Presented case study results clearly confirm the usefulness of boosting for neural-network-based surrogate models.

  • Název v anglickém jazyce

    Boosted Neural Networks in Evolutionary Computation

  • Popis výsledku anglicky

    The paper deals with a neural-network-based version of surrogate modelling, a modern approach to the optimization of empirical objective functions. The approach leads to a substantial decrease of time and costs of evaluation of the objective function, aproperty that is particularly attractive in evolutionary optimization. In the paper, an extension of surrogate modelling with regression boosting is proposed, which increases the accuracy of surrogate models, thus also the agreement between results obtained with the model and those obtained with the original objective function. The extension is illustrated on a case study in materials science. Presented case study results clearly confirm the usefulness of boosting for neural-network-based surrogate models.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2009

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Neural Information Processing

  • ISBN

    978-3-642-10682-8

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

  • Název nakladatele

    Springer

  • Místo vydání

    Berlin

  • Místo konání akce

    Bangkok

  • Datum konání akce

    1. 12. 2009

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku