Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Implicational (Semilinear) Logics I: A New Hierarchy

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F10%3A00342136" target="_blank" >RIV/67985807:_____/10:00342136 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Implicational (Semilinear) Logics I: A New Hierarchy

  • Popis výsledku v původním jazyce

    In abstract algebraic logic, the general study of propositional logics is based on the abstraction of the Lindenbaum-Tarski process, one considers the Leibniz relation of indiscernible formulae. It leads to the Leibniz hierarchy; a classification of logics based on generalized equivalences. We perform an analogous abstract study of non-classical logics based on generalized implications. It yields the hierarchy of implicational logics which expands Leibniz hierarchy. The notion of implicational semilinear logic is then naturally introduced as a property of the implication, namely a logic is an implicational semilinear logic iff it has an implication and is complete w.r.t. the matrices where this implication induces a linear order, a property which is satisfied by majority of fuzzy logics. This hierarchy is then restricted to the semilinear case obtaining a classification that encompasses almost all the known examples of fuzzy logics and suggests new directions for research.

  • Název v anglickém jazyce

    Implicational (Semilinear) Logics I: A New Hierarchy

  • Popis výsledku anglicky

    In abstract algebraic logic, the general study of propositional logics is based on the abstraction of the Lindenbaum-Tarski process, one considers the Leibniz relation of indiscernible formulae. It leads to the Leibniz hierarchy; a classification of logics based on generalized equivalences. We perform an analogous abstract study of non-classical logics based on generalized implications. It yields the hierarchy of implicational logics which expands Leibniz hierarchy. The notion of implicational semilinear logic is then naturally introduced as a property of the implication, namely a logic is an implicational semilinear logic iff it has an implication and is complete w.r.t. the matrices where this implication induces a linear order, a property which is satisfied by majority of fuzzy logics. This hierarchy is then restricted to the semilinear case obtaining a classification that encompasses almost all the known examples of fuzzy logics and suggests new directions for research.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GEICC%2F08%2FE018" target="_blank" >GEICC/08/E018: Logické modely usuzovaní s vagními informacemi</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Archive for Mathematical Logic

  • ISSN

    1432-0665

  • e-ISSN

  • Svazek periodika

    49

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    30

  • Strana od-do

  • Kód UT WoS článku

    000277246000001

  • EID výsledku v databázi Scopus