On Witnessed Models in Fuzzy Logic III - Witnessed Gödel Logics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F10%3A00342154" target="_blank" >RIV/67985807:_____/10:00342154 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Witnessed Models in Fuzzy Logic III - Witnessed Gödel Logics
Popis výsledku v původním jazyce
Gödel (fuzzy) logics with truth sets being countable closed subsets of the unit real interval containing 0 and 1 are studied under their usual semantics and under the witnessed semantics, the latter admitting only models in which the truth value of eachuniversally quantified formula is the minimum of truth values of its instances and dually for existential quantification and maximum. An infinite system of such truth sets is constructed such that under the usual semantics the corresponding logics have pairwise different sets of (standard) tautologies, all these sets being non-arithmetical, whereas under the witnessed semantics all the logics have the same set of tautologies and it is Pi2-complete.
Název v anglickém jazyce
On Witnessed Models in Fuzzy Logic III - Witnessed Gödel Logics
Popis výsledku anglicky
Gödel (fuzzy) logics with truth sets being countable closed subsets of the unit real interval containing 0 and 1 are studied under their usual semantics and under the witnessed semantics, the latter admitting only models in which the truth value of eachuniversally quantified formula is the minimum of truth values of its instances and dually for existential quantification and maximum. An infinite system of such truth sets is constructed such that under the usual semantics the corresponding logics have pairwise different sets of (standard) tautologies, all these sets being non-arithmetical, whereas under the witnessed semantics all the logics have the same set of tautologies and it is Pi2-complete.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1M0545" target="_blank" >1M0545: Institut Teoretické Informatiky</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Logic Quarterly
ISSN
0942-5616
e-ISSN
—
Svazek periodika
56
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
4
Strana od-do
—
Kód UT WoS článku
000276729000007
EID výsledku v databázi Scopus
—