Dominant matrices and max algebra
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F11%3A00351435" target="_blank" >RIV/67985807:_____/11:00351435 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dominant matrices and max algebra
Popis výsledku v původním jazyce
We study the class of so-called totally dominant matrices in the usual algebra and in the max algebra in which the sum is the maximum and the multiplication is usual. It turns out that this class coincides with the well known class of positive matrices having positive the determinants of all 22 submatrices. The closure of this class is closed not only with respect to the usual but also with respect to the max multiplication. Further properties analogous to those of totally positive matrices are proved and some connections to Monge matrices are mentioned. Keywords: Totally positive matrix; Factorization; Monge matrix; (0,1) matrix
Název v anglickém jazyce
Dominant matrices and max algebra
Popis výsledku anglicky
We study the class of so-called totally dominant matrices in the usual algebra and in the max algebra in which the sum is the maximum and the multiplication is usual. It turns out that this class coincides with the well known class of positive matrices having positive the determinants of all 22 submatrices. The closure of this class is closed not only with respect to the usual but also with respect to the max multiplication. Further properties analogous to those of totally positive matrices are proved and some connections to Monge matrices are mentioned. Keywords: Totally positive matrix; Factorization; Monge matrix; (0,1) matrix
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Linear Algebra and Its Applications
ISSN
0024-3795
e-ISSN
—
Svazek periodika
434
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
6
Strana od-do
—
Kód UT WoS článku
000286864300023
EID výsledku v databázi Scopus
—