Implementation of a direct procedure for critical point computations using preconditioned iterative solvers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F12%3A00376185" target="_blank" >RIV/67985807:_____/12:00376185 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.compstruc.2012.02.009" target="_blank" >http://dx.doi.org/10.1016/j.compstruc.2012.02.009</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compstruc.2012.02.009" target="_blank" >10.1016/j.compstruc.2012.02.009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Implementation of a direct procedure for critical point computations using preconditioned iterative solvers
Popis výsledku v původním jazyce
Computation of criticalpoints on an equilibrium path requires the solution of a non-linear eigenvalue problem. These criticalpoints could be either bifurcation or limit points. When the external load is parametrized by a single parameter, the non-linearstability eigenvalue problem consists of solving the equilibrium equations along the criticality condition. Several techniques exist for solution of such a system. Their algorithmic treatment is usually focused for direct linear solvers and thus use theblock elimination strategy. In this paper special emphasis is given for a strategy which can be used also with iterative linear solvers. Comparison to the block elimination strategy with direct linear solvers is given. Due to the non-uniqueness of the critical eigenmode a normalizing condition is required. In addition, for bifurcation points, the Jacobian matrix of the augmented system is singular at the criticalpoint and additional stabilization is required in order to maintain the quad
Název v anglickém jazyce
Implementation of a direct procedure for critical point computations using preconditioned iterative solvers
Popis výsledku anglicky
Computation of criticalpoints on an equilibrium path requires the solution of a non-linear eigenvalue problem. These criticalpoints could be either bifurcation or limit points. When the external load is parametrized by a single parameter, the non-linearstability eigenvalue problem consists of solving the equilibrium equations along the criticality condition. Several techniques exist for solution of such a system. Their algorithmic treatment is usually focused for direct linear solvers and thus use theblock elimination strategy. In this paper special emphasis is given for a strategy which can be used also with iterative linear solvers. Comparison to the block elimination strategy with direct linear solvers is given. Due to the non-uniqueness of the critical eigenmode a normalizing condition is required. In addition, for bifurcation points, the Jacobian matrix of the augmented system is singular at the criticalpoint and additional stabilization is required in order to maintain the quad
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP108%2F11%2F0853" target="_blank" >GAP108/11/0853: Nanostruktury obsahující tranzitivní kovy: Směrem k ab-initio materiálovému designu</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers and Structures
ISSN
0045-7949
e-ISSN
—
Svazek periodika
108-109
Číslo periodika v rámci svazku
October
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
110-117
Kód UT WoS článku
000309304100011
EID výsledku v databázi Scopus
—